論文の概要: Code Vulnerability Repair with Large Language Model using Context-Aware Prompt Tuning
- arxiv url: http://arxiv.org/abs/2409.18395v1
- Date: Fri, 27 Sep 2024 02:25:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 06:31:22.335968
- Title: Code Vulnerability Repair with Large Language Model using Context-Aware Prompt Tuning
- Title(参考訳): 文脈認識型プロンプトチューニングを用いた大規模言語モデルによるコードの脆弱性修復
- Authors: Arshiya Khan, Guannan Liu, Xing Gao,
- Abstract要約: 大規模言語モデル(LLM)は、脆弱なコードの検出と修復において重大な課題を示している。
本研究では、GitHub CopilotをLLMとして使用し、バッファオーバーフロー脆弱性に焦点を当てる。
実験の結果,バッファオーバーフローの脆弱性に対処する際のCopilotの能力には,76%の脆弱性検出率と15%の脆弱性修正率の差が認められた。
- 参考スコア(独自算出の注目度): 5.1071146597039245
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have shown significant challenges in detecting and repairing vulnerable code, particularly when dealing with vulnerabilities involving multiple aspects, such as variables, code flows, and code structures. In this study, we utilize GitHub Copilot as the LLM and focus on buffer overflow vulnerabilities. Our experiments reveal a notable gap in Copilot's abilities when dealing with buffer overflow vulnerabilities, with a 76% vulnerability detection rate but only a 15% vulnerability repair rate. To address this issue, we propose context-aware prompt tuning techniques designed to enhance LLM performance in repairing buffer overflow. By injecting a sequence of domain knowledge about the vulnerability, including various security and code contexts, we demonstrate that Copilot's successful repair rate increases to 63%, representing more than four times the improvement compared to repairs without domain knowledge.
- Abstract(参考訳): 大きな言語モデル(LLM)は、脆弱性のあるコードの検出と修復において、特に変数やコードフロー、コード構造など、複数の側面に関わる脆弱性に対処する上で、重大な課題を示している。
本研究では、GitHub CopilotをLLMとして使用し、バッファオーバーフロー脆弱性に焦点を当てる。
実験の結果,バッファオーバーフローの脆弱性に対処する際のCopilotの能力には,76%の脆弱性検出率と15%の脆弱性修正率の差が認められた。
そこで本研究では,バッファオーバーフローの修復におけるLLM性能の向上を目的とした,文脈認識型プロンプトチューニング手法を提案する。
さまざまなセキュリティやコードコンテキストを含む、脆弱性に関する一連のドメイン知識を注入することにより、Copilotが成功した修復率は63%に向上し、ドメイン知識のない修復に比べて4倍以上改善したことを示す。
関連論文リスト
- CommitShield: Tracking Vulnerability Introduction and Fix in Version Control Systems [15.037460085046806]
CommitShieldは、コードコミットの脆弱性を検出するツールである。
静的解析ツールのコード解析機能と、大きな言語モデルの自然言語とコード理解機能を組み合わせる。
脆弱性修正検出タスクの最先端メソッドに対して,CommitShieldはリコールを76%~87%改善することを示す。
論文 参考訳(メタデータ) (2025-01-07T08:52:55Z) - There are More Fish in the Sea: Automated Vulnerability Repair via Binary Templates [4.907610470063863]
本稿では,Javaバイナリに対するテンプレートベースの自動脆弱性修復手法を提案する。
Vul4Jデータセットの実験では、TemVURが11の脆弱性の修正に成功した。
TemVURの一般化性を評価するため、MaryVuls4Jデータセットをキュレートする。
論文 参考訳(メタデータ) (2024-11-27T06:59:45Z) - How Well Do Large Language Models Serve as End-to-End Secure Code Producers? [42.119319820752324]
GPT-3.5 と GPT-4 の 4 つの LLM で生成されたコードの脆弱性を識別し,修復する能力について検討した。
4900のコードを手動または自動でレビューすることで、大きな言語モデルにはシナリオ関連セキュリティリスクの認識が欠けていることが判明した。
修復の1ラウンドの制限に対処するため,LLMにより安全なソースコード構築を促す軽量ツールを開発した。
論文 参考訳(メタデータ) (2024-08-20T02:42:29Z) - Generalization-Enhanced Code Vulnerability Detection via Multi-Task Instruction Fine-Tuning [16.54022485688803]
VulLLMは、マルチタスク学習をLarge Language Models (LLM)と統合して、ディープシークな脆弱性機能を効果的にマイニングする新しいフレームワークである。
6つの大きなデータセットで実施された実験は、VulLLMが有効性、一般化、堅牢性という観点から7つの最先端モデルを上回ることを示した。
論文 参考訳(メタデータ) (2024-06-06T03:29:05Z) - NAVRepair: Node-type Aware C/C++ Code Vulnerability Repair [14.152755184229374]
NAVRepairは、ASTから抽出されたノードタイプ情報とエラータイプを組み合わせた、新しいフレームワークである。
既存のLLMベースのC/C++脆弱性修復法と比較して26%高い精度を実現している。
論文 参考訳(メタデータ) (2024-05-08T11:58:55Z) - Vulnerability Detection with Code Language Models: How Far Are We? [40.455600722638906]
PrimeVulは、脆弱性検出のためのコードLMのトレーニングと評価のための新しいデータセットである。
これは、人間の検証されたベンチマークに匹敵するラベルの精度を達成する、新しいデータラベリング技術を含んでいる。
また、厳密なデータ重複解消戦略と時系列データ分割戦略を実装して、データの漏洩問題を軽減している。
論文 参考訳(メタデータ) (2024-03-27T14:34:29Z) - Multi-LLM Collaboration + Data-Centric Innovation = 2x Better
Vulnerability Repair [14.920535179015006]
VulMasterはTransformerベースのニューラルネットワークモデルで、データ中心のイノベーションを通じて脆弱性の修復を生成する。
VulMasterを,5,800の脆弱性関数を持つ1,754のプロジェクトからなる実世界のC/C++脆弱性修復データセットで評価した。
論文 参考訳(メタデータ) (2024-01-27T16:51:52Z) - REEF: A Framework for Collecting Real-World Vulnerabilities and Fixes [40.401211102969356]
本稿では,REal-world vulnErabilities and Fixesをオープンソースリポジトリから収集するための自動収集フレームワークREEFを提案する。
脆弱性とその修正を収集する多言語クローラを開発し、高品質な脆弱性修正ペアをフィルタするためのメトリクスを設計する。
大規模な実験を通じて,我々の手法が高品質な脆弱性修正ペアを収集し,強力な説明を得られることを示す。
論文 参考訳(メタデータ) (2023-09-15T02:50:08Z) - On the Security Blind Spots of Software Composition Analysis [46.1389163921338]
Mavenリポジトリで脆弱性のあるクローンを検出するための新しいアプローチを提案する。
Maven Centralから53万以上の潜在的な脆弱性のあるクローンを検索します。
検出された727個の脆弱なクローンを検出し、それぞれに検証可能な脆弱性証明プロジェクトを合成する。
論文 参考訳(メタデータ) (2023-06-08T20:14:46Z) - CodeLMSec Benchmark: Systematically Evaluating and Finding Security
Vulnerabilities in Black-Box Code Language Models [58.27254444280376]
自動コード生成のための大規模言語モデル(LLM)は、いくつかのプログラミングタスクにおいてブレークスルーを達成した。
これらのモデルのトレーニングデータは、通常、インターネット(例えばオープンソースのリポジトリから)から収集され、障害やセキュリティ上の脆弱性を含む可能性がある。
この不衛生なトレーニングデータは、言語モデルにこれらの脆弱性を学習させ、コード生成手順中にそれを伝播させる可能性がある。
論文 参考訳(メタデータ) (2023-02-08T11:54:07Z) - VELVET: a noVel Ensemble Learning approach to automatically locate
VulnErable sTatements [62.93814803258067]
本稿では,ソースコード中の脆弱な文を見つけるための新しいアンサンブル学習手法であるVELVETを提案する。
我々のモデルは、グラフベースとシーケンスベースニューラルネットワークを組み合わせて、プログラムグラフの局所的およびグローバル的コンテキストを捕捉する。
VELVETは、合成データと実世界のデータに対して、それぞれ99.6%と43.6%の精度を達成している。
論文 参考訳(メタデータ) (2021-12-20T22:45:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。