Multi-agent Reinforcement Learning for Dynamic Dispatching in Material Handling Systems
- URL: http://arxiv.org/abs/2409.18435v1
- Date: Fri, 27 Sep 2024 03:57:54 GMT
- Title: Multi-agent Reinforcement Learning for Dynamic Dispatching in Material Handling Systems
- Authors: Xian Yeow Lee, Haiyan Wang, Daisuke Katsumata, Takaharu Matsui, Chetan Gupta,
- Abstract summary: This paper proposes a multi-agent reinforcement learning (MARL) approach to learn dynamic dispatching strategies.
To benchmark our method, we developed a material handling environment that reflects the complexities of an actual system.
- Score: 5.050348337816326
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper proposes a multi-agent reinforcement learning (MARL) approach to learn dynamic dispatching strategies, which is crucial for optimizing throughput in material handling systems across diverse industries. To benchmark our method, we developed a material handling environment that reflects the complexities of an actual system, such as various activities at different locations, physical constraints, and inherent uncertainties. To enhance exploration during learning, we propose a method to integrate domain knowledge in the form of existing dynamic dispatching heuristics. Our experimental results show that our method can outperform heuristics by up to 7.4 percent in terms of median throughput. Additionally, we analyze the effect of different architectures on MARL performance when training multiple agents with different functions. We also demonstrate that the MARL agents performance can be further improved by using the first iteration of MARL agents as heuristics to train a second iteration of MARL agents. This work demonstrates the potential of applying MARL to learn effective dynamic dispatching strategies that may be deployed in real-world systems to improve business outcomes.
Related papers
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Meta Reasoning for Large Language Models [58.87183757029041]
We introduce Meta-Reasoning Prompting (MRP), a novel and efficient system prompting method for large language models (LLMs)
MRP guides LLMs to dynamically select and apply different reasoning methods based on the specific requirements of each task.
We evaluate the effectiveness of MRP through comprehensive benchmarks.
arXiv Detail & Related papers (2024-06-17T16:14:11Z) - Watch Every Step! LLM Agent Learning via Iterative Step-Level Process Refinement [50.481380478458945]
Iterative step-level Process Refinement (IPR) framework provides detailed step-by-step guidance to enhance agent training.
Our experiments on three complex agent tasks demonstrate that our framework outperforms a variety of strong baselines.
arXiv Detail & Related papers (2024-06-17T03:29:13Z) - Representation Learning For Efficient Deep Multi-Agent Reinforcement Learning [10.186029242664931]
We present MAPO-LSO which applies a form of comprehensive representation learning devised to supplement MARL training.
Specifically, MAPO-LSO proposes a multi-agent extension of transition dynamics reconstruction and self-predictive learning.
Empirical results demonstrate MAPO-LSO to show notable improvements in sample efficiency and learning performance compared to its vanilla MARL counterpart.
arXiv Detail & Related papers (2024-06-05T03:11:44Z) - Attention-Driven Multi-Agent Reinforcement Learning: Enhancing Decisions with Expertise-Informed Tasks [1.7689232761699216]
We introduce an alternative approach to enhancing Multi-Agent Reinforcement Learning (MARL)
Our methodology focuses on the incorporation of domain-specific expertise into the learning process.
We show that our attention-based approach can be a viable approach for improving the efficiency of MARL training process.
arXiv Detail & Related papers (2024-04-08T20:06:33Z) - Trial and Error: Exploration-Based Trajectory Optimization for LLM Agents [49.85633804913796]
We present an exploration-based trajectory optimization approach, referred to as ETO.
This learning method is designed to enhance the performance of open LLM agents.
Our experiments on three complex tasks demonstrate that ETO consistently surpasses baseline performance by a large margin.
arXiv Detail & Related papers (2024-03-04T21:50:29Z) - MA2CL:Masked Attentive Contrastive Learning for Multi-Agent
Reinforcement Learning [128.19212716007794]
We propose an effective framework called textbfMulti-textbfAgent textbfMasked textbfAttentive textbfContrastive textbfLearning (MA2CL)
MA2CL encourages learning representation to be both temporal and agent-level predictive by reconstructing the masked agent observation in latent space.
Our method significantly improves the performance and sample efficiency of different MARL algorithms and outperforms other methods in various vision-based and state-based scenarios.
arXiv Detail & Related papers (2023-06-03T05:32:19Z) - Efficient Model-based Multi-agent Reinforcement Learning via Optimistic
Equilibrium Computation [93.52573037053449]
H-MARL (Hallucinated Multi-Agent Reinforcement Learning) learns successful equilibrium policies after a few interactions with the environment.
We demonstrate our approach experimentally on an autonomous driving simulation benchmark.
arXiv Detail & Related papers (2022-03-14T17:24:03Z) - Parallel Knowledge Transfer in Multi-Agent Reinforcement Learning [0.2538209532048867]
This paper proposes a novel knowledge transfer framework in MARL, PAT (Parallel Attentional Transfer)
We design two acting modes in PAT, student mode and self-learning mode.
When agents are unfamiliar with the environment, the shared attention mechanism in student mode effectively selects learning knowledge from other agents to decide agents' actions.
arXiv Detail & Related papers (2020-03-29T17:42:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.