Attention-Driven Multi-Agent Reinforcement Learning: Enhancing Decisions with Expertise-Informed Tasks
- URL: http://arxiv.org/abs/2404.05840v3
- Date: Fri, 17 May 2024 16:01:54 GMT
- Title: Attention-Driven Multi-Agent Reinforcement Learning: Enhancing Decisions with Expertise-Informed Tasks
- Authors: Andre R Kuroswiski, Annie S Wu, Angelo Passaro,
- Abstract summary: We introduce an alternative approach to enhancing Multi-Agent Reinforcement Learning (MARL)
Our methodology focuses on the incorporation of domain-specific expertise into the learning process.
We show that our attention-based approach can be a viable approach for improving the efficiency of MARL training process.
- Score: 1.7689232761699216
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we introduce an alternative approach to enhancing Multi-Agent Reinforcement Learning (MARL) through the integration of domain knowledge and attention-based policy mechanisms. Our methodology focuses on the incorporation of domain-specific expertise into the learning process, which simplifies the development of collaborative behaviors. This approach aims to reduce the complexity and learning overhead typically associated with MARL by enabling agents to concentrate on essential aspects of complex tasks, thus optimizing the learning curve. The utilization of attention mechanisms plays a key role in our model. It allows for the effective processing of dynamic context data and nuanced agent interactions, leading to more refined decision-making. Applied in standard MARL scenarios, such as the Stanford Intelligent Systems Laboratory (SISL) Pursuit and Multi-Particle Environments (MPE) Simple Spread, our method has been shown to improve both learning efficiency and the effectiveness of collaborative behaviors. The results indicate that our attention-based approach can be a viable approach for improving the efficiency of MARL training process, integrating domain-specific knowledge at the action level.
Related papers
- From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.
We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Multi-agent Reinforcement Learning for Dynamic Dispatching in Material Handling Systems [5.050348337816326]
This paper proposes a multi-agent reinforcement learning (MARL) approach to learn dynamic dispatching strategies.
To benchmark our method, we developed a material handling environment that reflects the complexities of an actual system.
arXiv Detail & Related papers (2024-09-27T03:57:54Z) - Cognitive LLMs: Towards Integrating Cognitive Architectures and Large Language Models for Manufacturing Decision-making [51.737762570776006]
LLM-ACTR is a novel neuro-symbolic architecture that provides human-aligned and versatile decision-making.
Our framework extracts and embeds knowledge of ACT-R's internal decision-making process as latent neural representations.
Our experiments on novel Design for Manufacturing tasks show both improved task performance as well as improved grounded decision-making capability.
arXiv Detail & Related papers (2024-08-17T11:49:53Z) - REVEAL-IT: REinforcement learning with Visibility of Evolving Agent poLicy for InTerpretability [23.81322529587759]
REVEAL-IT is a novel framework for explaining the learning process of an agent in complex environments.
We visualize the policy structure and the agent's learning process for various training tasks.
A GNN-based explainer learns to highlight the most important section of the policy, providing a more clear and robust explanation of the agent's learning process.
arXiv Detail & Related papers (2024-06-20T11:29:26Z) - Representation Learning For Efficient Deep Multi-Agent Reinforcement Learning [10.186029242664931]
We present MAPO-LSO which applies a form of comprehensive representation learning devised to supplement MARL training.
Specifically, MAPO-LSO proposes a multi-agent extension of transition dynamics reconstruction and self-predictive learning.
Empirical results demonstrate MAPO-LSO to show notable improvements in sample efficiency and learning performance compared to its vanilla MARL counterpart.
arXiv Detail & Related papers (2024-06-05T03:11:44Z) - Decentralized and Lifelong-Adaptive Multi-Agent Collaborative Learning [57.652899266553035]
Decentralized and lifelong-adaptive multi-agent collaborative learning aims to enhance collaboration among multiple agents without a central server.
We propose DeLAMA, a decentralized multi-agent lifelong collaborative learning algorithm with dynamic collaboration graphs.
arXiv Detail & Related papers (2024-03-11T09:21:11Z) - Enabling Multi-Agent Transfer Reinforcement Learning via Scenario
Independent Representation [0.7366405857677227]
Multi-Agent Reinforcement Learning (MARL) algorithms are widely adopted in tackling complex tasks that require collaboration and competition among agents.
We introduce a novel framework that enables transfer learning for MARL through unifying various state spaces into fixed-size inputs.
We show significant enhancements in multi-agent learning performance using maneuvering skills learned from other scenarios compared to agents learning from scratch.
arXiv Detail & Related papers (2024-02-13T02:48:18Z) - RLIF: Interactive Imitation Learning as Reinforcement Learning [56.997263135104504]
We show how off-policy reinforcement learning can enable improved performance under assumptions that are similar but potentially even more practical than those of interactive imitation learning.
Our proposed method uses reinforcement learning with user intervention signals themselves as rewards.
This relaxes the assumption that intervening experts in interactive imitation learning should be near-optimal and enables the algorithm to learn behaviors that improve over the potential suboptimal human expert.
arXiv Detail & Related papers (2023-11-21T21:05:21Z) - Corex: Pushing the Boundaries of Complex Reasoning through Multi-Model Collaboration [83.4031923134958]
Corex is a suite of novel general-purpose strategies that transform Large Language Models into autonomous agents.
Inspired by human behaviors, Corex is constituted by diverse collaboration paradigms including Debate, Review, and Retrieve modes.
We demonstrate that orchestrating multiple LLMs to work in concert yields substantially better performance compared to existing methods.
arXiv Detail & Related papers (2023-09-30T07:11:39Z) - Learning Reward Machines in Cooperative Multi-Agent Tasks [75.79805204646428]
This paper presents a novel approach to Multi-Agent Reinforcement Learning (MARL)
It combines cooperative task decomposition with the learning of reward machines (RMs) encoding the structure of the sub-tasks.
The proposed method helps deal with the non-Markovian nature of the rewards in partially observable environments.
arXiv Detail & Related papers (2023-03-24T15:12:28Z) - KnowRU: Knowledge Reusing via Knowledge Distillation in Multi-agent
Reinforcement Learning [16.167201058368303]
Deep Reinforcement Learning (RL) algorithms have achieved dramatically progress in the multi-agent area.
To alleviate this problem, efficient leveraging of the historical experience is essential.
We propose a method, named "KnowRU" for knowledge reusing.
arXiv Detail & Related papers (2021-03-27T12:38:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.