論文の概要: Underwater Image Enhancement with Physical-based Denoising Diffusion Implicit Models
- arxiv url: http://arxiv.org/abs/2409.18476v1
- Date: Fri, 27 Sep 2024 06:33:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 06:02:07.295220
- Title: Underwater Image Enhancement with Physical-based Denoising Diffusion Implicit Models
- Title(参考訳): 物理次元拡散インシシデントモデルによる水中画像の強調
- Authors: Nguyen Gia Bach, Chanh Minh Tran, Eiji Kamioka, Phan Xuan Tan,
- Abstract要約: 水中視力は自律型水中車両(AUV)にとって不可欠
従来の画像強調技術では、様々な水中条件への適応性が欠如している。
拡散確率モデル(DDPM)は、画像から画像へのタスクにおける最先端のアプローチとして登場した。
本稿では,新しい物理ベースおよび拡散ベースUIEアプローチであるUW-DiffPhysを紹介する。
- 参考スコア(独自算出の注目度): 0.03749861135832072
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Underwater vision is crucial for autonomous underwater vehicles (AUVs), and enhancing degraded underwater images in real-time on a resource-constrained AUV is a key challenge due to factors like light absorption and scattering, or the sufficient model computational complexity to resolve such factors. Traditional image enhancement techniques lack adaptability to varying underwater conditions, while learning-based methods, particularly those using convolutional neural networks (CNNs) and generative adversarial networks (GANs), offer more robust solutions but face limitations such as inadequate enhancement, unstable training, or mode collapse. Denoising diffusion probabilistic models (DDPMs) have emerged as a state-of-the-art approach in image-to-image tasks but require intensive computational complexity to achieve the desired underwater image enhancement (UIE) using the recent UW-DDPM solution. To address these challenges, this paper introduces UW-DiffPhys, a novel physical-based and diffusion-based UIE approach. UW-DiffPhys combines light-computation physical-based UIE network components with a denoising U-Net to replace the computationally intensive distribution transformation U-Net in the existing UW-DDPM framework, reducing complexity while maintaining performance. Additionally, the Denoising Diffusion Implicit Model (DDIM) is employed to accelerate the inference process through non-Markovian sampling. Experimental results demonstrate that UW-DiffPhys achieved a substantial reduction in computational complexity and inference time compared to UW-DDPM, with competitive performance in key metrics such as PSNR, SSIM, UCIQE, and an improvement in the overall underwater image quality UIQM metric. The implementation code can be found at the following repository: https://github.com/bachzz/UW-DiffPhys
- Abstract(参考訳): 水中の視覚は自律型水中車両(AUV)にとって不可欠であり、資源に制約されたAUV上での劣化した水中画像のリアルタイム化は、光吸収や散乱などの要因や、そのような要因を解決するのに十分なモデル複雑化のために重要な課題である。
従来の画像強調技術は、様々な水中条件への適応性を欠いているが、学習ベースの手法、特に畳み込みニューラルネットワーク(CNN)と生成的敵ネットワーク(GAN)を使用するものは、より堅牢なソリューションを提供するが、不適切な強化、不安定なトレーニング、モード崩壊といった制限に直面している。
拡散確率モデル(DDPM)は画像から画像へのタスクにおいて最先端のアプローチとして登場したが、近年のUW-DDPMソリューションを用いて望まれる水中画像強調(UIE)を実現するには、計算量を要する。
これらの課題に対処するために、新しい物理ベースおよび拡散ベースのUIEアプローチであるUW-DiffPhysを紹介する。
UW-DiffPhysは、光計算物理ベースのUIEネットワークコンポーネントとデノイングU-Netを組み合わせて、既存のUW-DDPMフレームワークにおける計算集約的な分散変換U-Netを置き換える。
さらに,非マルコフサンプリングによる推論プロセスの高速化にDDIM(Denoising Diffusion Implicit Model)を用いる。
実験結果から,UW-DiffPhysはPSNR,SSIM,UCIQEなどの重要な指標の競合性能と,水中画像品質UIQM測定値の全体的な改善により,UW-DDPMと比較して計算複雑性と推論時間を大幅に短縮した。
実装コードは以下のリポジトリで見ることができる。
関連論文リスト
- Advanced Underwater Image Quality Enhancement via Hybrid Super-Resolution Convolutional Neural Networks and Multi-Scale Retinex-Based Defogging Techniques [0.0]
この研究は、提案されたアプローチの有効性をさらに説明するために、現実世界の水中データセットに関する広範な実験を行っている。
海洋探査、水中ロボティクス、自律水中車両といったリアルタイムの水中アプリケーションでは、ディープラーニングと従来の画像処理技術を組み合わせることで、計算効率の良いフレームワークと優れた結果が得られる。
論文 参考訳(メタデータ) (2024-10-18T08:40:26Z) - UIE-UnFold: Deep Unfolding Network with Color Priors and Vision Transformer for Underwater Image Enhancement [27.535028176427623]
水中画像強調(UIE)は様々な海洋用途において重要な役割を担っている。
現在の学習に基づくアプローチは、水中画像形成に関わる物理過程に関する明確な事前知識を欠いていることが多い。
そこで本稿では,UIEのカラープリエントとステージ間特徴付与を統合した新しいディープ・アンフォールディング・ネットワーク(DUN)を提案する。
論文 参考訳(メタデータ) (2024-08-20T08:48:33Z) - WaterMamba: Visual State Space Model for Underwater Image Enhancement [17.172623370407155]
水中イメージングは、光の伝播や水中の吸収に影響を及ぼす要因によって、しばしば品質の低下に悩まされる。
画像品質を向上させるため、畳み込みニューラルネットワーク(CNN)とトランスフォーマーに基づく水中画像強調法(UIE)が提案されている。
計算複雑性と高度水中画像劣化を考慮して,UIEの線形計算複雑性を持つ状態空間モデルであるWaterMambaを提案する。
論文 参考訳(メタデータ) (2024-05-14T08:26:29Z) - DGNet: Dynamic Gradient-Guided Network for Water-Related Optics Image
Enhancement [77.0360085530701]
水中画像強調(UIE)は、水中環境によって引き起こされる複雑な劣化のために難しい課題である。
従来の手法では、劣化過程を理想化し、中音や物体の動きが画像の特徴の分布に与える影響を無視することが多い。
提案手法では,予測画像を用いて疑似ラベルを動的に更新し,動的勾配を加えてネットワークの勾配空間を最適化する。
論文 参考訳(メタデータ) (2023-12-12T06:07:21Z) - UWFormer: Underwater Image Enhancement via a Semi-Supervised Multi-Scale Transformer [26.15238399758745]
水中画像は、品質が悪く、色調が歪んだり、コントラストが低かったりすることが多い。
現在のディープラーニング手法は、マルチスケール拡張に欠けるニューラル畳み込みネットワーク(CNN)に依存している。
半教師付き学習によって複数の周波数の画像を拡張するためのマルチスケールトランスフォーマーベースネットワークを提案する。
論文 参考訳(メタデータ) (2023-10-31T06:19:09Z) - Physics-Driven Turbulence Image Restoration with Stochastic Refinement [80.79900297089176]
大気乱流による画像歪みは、長距離光学画像システムにおいて重要な問題である。
ディープラーニングモデルが現実世界の乱流条件に適応するために、高速で物理学的なシミュレーションツールが導入された。
本稿では,物理統合復元ネットワーク(PiRN)を提案する。
論文 参考訳(メタデータ) (2023-07-20T05:49:21Z) - PUGAN: Physical Model-Guided Underwater Image Enhancement Using GAN with
Dual-Discriminators [120.06891448820447]
鮮明で視覚的に快適な画像を得る方法は、人々の共通の関心事となっている。
水中画像強調(UIE)の課題も、時間とともに現れた。
本稿では,UIE のための物理モデル誘導型 GAN モデルを提案する。
我々のPUGANは質的および定量的な測定値において最先端の手法より優れています。
論文 参考訳(メタデータ) (2023-06-15T07:41:12Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
拡散モデルは画像復元作業において有望な結果を得たが、時間を要する、過剰な計算資源消費、不安定な復元に悩まされている。
本稿では,DiffLLと呼ばれる高能率かつ高能率な拡散型低光画像強調手法を提案する。
論文 参考訳(メタデータ) (2023-06-01T03:08:28Z) - Image-specific Convolutional Kernel Modulation for Single Image
Super-resolution [85.09413241502209]
本稿では,新しい画像特異的畳み込み変調カーネル(IKM)を提案する。
我々は、画像や特徴のグローバルな文脈情報を利用して、畳み込みカーネルを適応的に調整するための注意重みを生成する。
単一画像超解像実験により,提案手法は最先端手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2021-11-16T11:05:10Z) - Learning Frequency-aware Dynamic Network for Efficient Super-Resolution [56.98668484450857]
本稿では、離散コサイン変換(dct)領域の係数に応じて入力を複数の部分に分割する新しい周波数認識動的ネットワークについて検討する。
実際、高周波部は高価な操作で処理され、低周波部は計算負荷を軽減するために安価な操作が割り当てられる。
ベンチマークSISRモデルおよびデータセット上での実験は、周波数認識動的ネットワークが様々なSISRニューラルネットワークに使用できることを示している。
論文 参考訳(メタデータ) (2021-03-15T12:54:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。