WHOMP: Optimizing Randomized Controlled Trials via Wasserstein Homogeneity
- URL: http://arxiv.org/abs/2409.18504v2
- Date: Thu, 3 Oct 2024 06:06:18 GMT
- Title: WHOMP: Optimizing Randomized Controlled Trials via Wasserstein Homogeneity
- Authors: Shizhou Xu, Thomas Strohmer,
- Abstract summary: We introduce a novel partitioning method called the $textitWasserstein Homogeneity Partition$ (WHOMP)
WHOMP optimally minimizes type I and type II errors that often result from imbalanced group splitting or partitioning.
- Score: 3.05179671246628
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We investigate methods for partitioning datasets into subgroups that maximize diversity within each subgroup while minimizing dissimilarity across subgroups. We introduce a novel partitioning method called the $\textit{Wasserstein Homogeneity Partition}$ (WHOMP), which optimally minimizes type I and type II errors that often result from imbalanced group splitting or partitioning, commonly referred to as accidental bias, in comparative and controlled trials. We conduct an analytical comparison of WHOMP against existing partitioning methods, such as random subsampling, covariate-adaptive randomization, rerandomization, and anti-clustering, demonstrating its advantages. Moreover, we characterize the optimal solutions to the WHOMP problem and reveal an inherent trade-off between the stability of subgroup means and variances among these solutions. Based on our theoretical insights, we design algorithms that not only obtain these optimal solutions but also equip practitioners with tools to select the desired trade-off. Finally, we validate the effectiveness of WHOMP through numerical experiments, highlighting its superiority over traditional methods.
Related papers
- Clustering-Based Validation Splits for Model Selection under Domain Shift [0.0]
It is proposed that the training-validation split should maximise the distribution mismatch between the two sets.
A constrained clustering algorithm, which leverages linear programming to control the size, label, and (optionally) group distributions of the splits, is presented.
arXiv Detail & Related papers (2024-05-29T19:21:17Z) - Towards Efficient Pareto-optimal Utility-Fairness between Groups in
Repeated Rankings [7.6275971668447005]
We tackle the problem of computing a sequence of rankings with the guarantee of the Pareto-optimal balance between consumers and producers of items.
We introduce a novel approach to the above problem by using the Expohedron - a permutahedron whose points represent all exposures of items.
We further propose an efficient method by relaxing our optimization problem on the Expohedron's circumscribed $n$-sphere, which significantly improve the running time.
arXiv Detail & Related papers (2024-02-22T05:48:54Z) - Dynamic Incremental Optimization for Best Subset Selection [15.8362578568708]
Best subset selection is considered the gold standard for many learning problems.
An efficient subset-dual algorithm is developed based on the primal and dual problem structures.
arXiv Detail & Related papers (2024-02-04T02:26:40Z) - Distributed Markov Chain Monte Carlo Sampling based on the Alternating
Direction Method of Multipliers [143.6249073384419]
In this paper, we propose a distributed sampling scheme based on the alternating direction method of multipliers.
We provide both theoretical guarantees of our algorithm's convergence and experimental evidence of its superiority to the state-of-the-art.
In simulation, we deploy our algorithm on linear and logistic regression tasks and illustrate its fast convergence compared to existing gradient-based methods.
arXiv Detail & Related papers (2024-01-29T02:08:40Z) - Optimal Multi-Distribution Learning [88.3008613028333]
Multi-distribution learning seeks to learn a shared model that minimizes the worst-case risk across $k$ distinct data distributions.
We propose a novel algorithm that yields an varepsilon-optimal randomized hypothesis with a sample complexity on the order of (d+k)/varepsilon2.
arXiv Detail & Related papers (2023-12-08T16:06:29Z) - A distribution-free mixed-integer optimization approach to hierarchical modelling of clustered and longitudinal data [0.0]
We introduce an innovative algorithm that evaluates cluster effects for new data points, thereby increasing the robustness and precision of this model.
The inferential and predictive efficacy of this approach is further illustrated through its application in student scoring and protein expression.
arXiv Detail & Related papers (2023-02-06T23:34:51Z) - Asymptotically Unbiased Instance-wise Regularized Partial AUC
Optimization: Theory and Algorithm [101.44676036551537]
One-way Partial AUC (OPAUC) and Two-way Partial AUC (TPAUC) measures the average performance of a binary classifier.
Most of the existing methods could only optimize PAUC approximately, leading to inevitable biases that are not controllable.
We present a simpler reformulation of the PAUC problem via distributional robust optimization AUC.
arXiv Detail & Related papers (2022-10-08T08:26:22Z) - Harnessing Heterogeneity: Learning from Decomposed Feedback in Bayesian
Modeling [68.69431580852535]
We introduce a novel GP regression to incorporate the subgroup feedback.
Our modified regression has provably lower variance -- and thus a more accurate posterior -- compared to previous approaches.
We execute our algorithm on two disparate social problems.
arXiv Detail & Related papers (2021-07-07T03:57:22Z) - Partition-based formulations for mixed-integer optimization of trained
ReLU neural networks [66.88252321870085]
This paper introduces a class of mixed-integer formulations for trained ReLU neural networks.
At one extreme, one partition per input recovers the convex hull of a node, i.e., the tightest possible formulation for each node.
arXiv Detail & Related papers (2021-02-08T17:27:34Z) - Robust Recursive Partitioning for Heterogeneous Treatment Effects with
Uncertainty Quantification [84.53697297858146]
Subgroup analysis of treatment effects plays an important role in applications from medicine to public policy to recommender systems.
Most of the current methods of subgroup analysis begin with a particular algorithm for estimating individualized treatment effects (ITE)
This paper develops a new method for subgroup analysis, R2P, that addresses all these weaknesses.
arXiv Detail & Related papers (2020-06-14T14:50:02Z) - Robust Grouped Variable Selection Using Distributionally Robust
Optimization [11.383869751239166]
We propose a Distributionally Robust Optimization (DRO) formulation with a Wasserstein-based uncertainty set for selecting grouped variables under perturbations.
We prove probabilistic bounds on the out-of-sample loss and the estimation bias, and establish the grouping effect of our estimator.
We show that our formulation produces an interpretable and parsimonious model that encourages sparsity at a group level.
arXiv Detail & Related papers (2020-06-10T22:32:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.