論文の概要: Optimizing DNN Inference on Multi-Accelerator SoCs at Training-time
- arxiv url: http://arxiv.org/abs/2409.18566v1
- Date: Fri, 27 Sep 2024 09:10:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-01 21:55:30.169589
- Title: Optimizing DNN Inference on Multi-Accelerator SoCs at Training-time
- Title(参考訳): マルチアクセラレータSOCの訓練時間におけるDNN推論の最適化
- Authors: Matteo Risso, Alessio Burrello, Daniele Jahier Pagliari,
- Abstract要約: 我々は,様々なチップのCUの中から,ディープニューラルネットワーク(DNN)の細粒度マッピングを効率的に探索するハードウェア認識ツールであるODiMOを提案する。
ODiMOはDarkside上で実行されるDNNの遅延を、手動のマッピングに比べて最大8倍の精度で削減することを示す。
エネルギーを目標とする場合、ODiMOはより効率的なマッピングを最大50.8倍に生成し、精度は最小限に抑えた。
- 参考スコア(独自算出の注目度): 5.05866540830123
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The demand for executing Deep Neural Networks (DNNs) with low latency and minimal power consumption at the edge has led to the development of advanced heterogeneous Systems-on-Chips (SoCs) that incorporate multiple specialized computing units (CUs), such as accelerators. Offloading DNN computations to a specific CU from the available set often exposes accuracy vs efficiency trade-offs, due to differences in their supported operations (e.g., standard vs. depthwise convolution) or data representations (e.g., more/less aggressively quantized). A challenging yet unresolved issue is how to map a DNN onto these multi-CU systems to maximally exploit the parallelization possibilities while taking accuracy into account. To address this problem, we present ODiMO, a hardware-aware tool that efficiently explores fine-grain mapping of DNNs among various on-chip CUs, during the training phase. ODiMO strategically splits individual layers of the neural network and executes them in parallel on the multiple available CUs, aiming to balance the total inference energy consumption or latency with the resulting accuracy, impacted by the unique features of the different hardware units. We test our approach on CIFAR-10, CIFAR-100, and ImageNet, targeting two open-source heterogeneous SoCs, i.e., DIANA and Darkside. We obtain a rich collection of Pareto-optimal networks in the accuracy vs. energy or latency space. We show that ODiMO reduces the latency of a DNN executed on the Darkside SoC by up to 8x at iso-accuracy, compared to manual heuristic mappings. When targeting energy, on the same SoC, ODiMO produced up to 50.8x more efficient mappings, with minimal accuracy drop (< 0.3%).
- Abstract(参考訳): エッジでの低レイテンシと最小消費電力でDeep Neural Networks (DNN) を実行するための需要は、アクセラレータのような複数の専用コンピューティングユニット(CU)を組み込んだ高度な異種システムオンチップ(SoC)の開発につながった。
利用可能なセットから特定のCUにDNN計算をオフロードすると、サポート対象の操作(例えば、標準対深みの畳み込み)やデータ表現(例えば、より積極的に量子化する)の違いにより、精度対効率のトレードオフが発生する。
困難だが未解決の問題は、DNNをこれらのマルチCUシステムにマッピングして、正確性を考慮して並列化の可能性の最大化方法である。
この問題を解決するため、トレーニング期間中にDNNの細粒度マッピングを効率的に行うハードウェア認識ツールであるODiMOを提案する。
ODiMOは、ニューラルネットワークの個々の層を戦略的に分割し、複数の利用可能なCU上でそれらを並列に実行する。
我々は、CIFAR-10、CIFAR-100、ImageNetの2つのオープンソース異種SoC、すなわちDIANAとDarksideを対象に、我々のアプローチを検証した。
我々は、エネルギーや遅延空間の精度において、パレート最適ネットワークの豊富なコレクションを得る。
ODiMOはDarkside SoC上で実行されるDNNの遅延を,手動ヒューリスティックマッピングと比較して最大8倍の精度で低減することを示す。
同じSoCでエネルギーを標的とする場合、ODiMOはより効率的なマッピングを最大50.8倍に生成し、最小の精度低下(0.3%)を達成した。
関連論文リスト
- FusionLLM: A Decentralized LLM Training System on Geo-distributed GPUs with Adaptive Compression [55.992528247880685]
分散トレーニングは、システム設計と効率に関する重要な課題に直面します。
大規模深層ニューラルネットワーク(DNN)のトレーニング用に設計・実装された分散トレーニングシステムFusionLLMを提案する。
本システムと手法は,収束性を確保しつつ,ベースライン法と比較して1.45~9.39倍の高速化を実現可能であることを示す。
論文 参考訳(メタデータ) (2024-10-16T16:13:19Z) - DCP: Learning Accelerator Dataflow for Neural Network via Propagation [52.06154296196845]
この研究は、DNN層の最適なデータフローを人間の努力なしに数秒で自動的に見つけるために、Dataflow Code Propagation (DCP)と呼ばれる効率的なデータ中心のアプローチを提案する。
DCPは、様々な最適化目標を最小化するために、望ましい勾配方向に向けてデータフローコードを効率的に更新する神経予測器を学習する。
例えば、追加のトレーニングデータを使用しないDCPは、数千のサンプルを使用して完全な検索を行うGAMAメソッドを超越している。
論文 参考訳(メタデータ) (2024-10-09T05:16:44Z) - Exploring Quantization and Mapping Synergy in Hardware-Aware Deep Neural Network Accelerators [0.20971479389679332]
CNN推論アクセラレータに実装された畳み込みニューラルネットワーク(CNN)のエネルギー効率とメモリフットプリントは多くの要因に依存する。
実装中にリッチな混合量子化スキームを有効にすることで、以前に隠れていたマッピングの空間を開放できることが示される。
量子化重みとアクティベーションと適切なマッピングを利用するCNNは、精度、エネルギ、メモリ要求間のトレードオフを大幅に改善することができる。
論文 参考訳(メタデータ) (2024-04-08T10:10:30Z) - Hardware-Aware DNN Compression via Diverse Pruning and Mixed-Precision
Quantization [1.0235078178220354]
本稿では, プルーニングと量子化を併用してハードウェアに配慮したディープニューラルネットワーク(DNN)の自動圧縮フレームワークを提案する。
われわれのフレームワークはデータセットの平均エネルギー消費量を39%減らし、平均精度損失を1.7%減らし、最先端のアプローチを著しく上回っている。
論文 参考訳(メタデータ) (2023-12-23T18:50:13Z) - Latency-aware Unified Dynamic Networks for Efficient Image Recognition [72.8951331472913]
LAUDNetは動的ネットワークの理論的および実用的な効率ギャップを橋渡しするフレームワークである。
3つの主要な動的パラダイム - 適応型計算、動的層スキップ、動的チャネルスキップ - を統合している。
これにより、V100,3090やTX2 GPUのようなプラットフォーム上で、ResNetのようなモデルの遅延を50%以上削減できる。
論文 参考訳(メタデータ) (2023-08-30T10:57:41Z) - Shared Memory-contention-aware Concurrent DNN Execution for Diversely
Heterogeneous System-on-Chips [0.32634122554914]
HaX-CoNNは、推論ワークロードの同時実行においてレイヤを特徴付け、マップする新しいスキームである。
NVIDIA Orin,NVIDIA Xavier,Qualcomm Snapdragon 865 SOC上でHaX-CoNNを評価した。
論文 参考訳(メタデータ) (2023-08-10T22:47:40Z) - Precision-aware Latency and Energy Balancing on Multi-Accelerator
Platforms for DNN Inference [22.9834921448069]
我々は,チップ上で異なるアクセラレーター間で細粒度マッピングを行うハードウェア認識ツールであるODiMOを提案する。
ODiMOは,手動マッピングと比較して,限界精度低下(-0.53%/-0.32%)で,最大33%/31%のエネルギー/遅延を減少させることを示した。
論文 参考訳(メタデータ) (2023-06-08T09:23:46Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - DepthShrinker: A New Compression Paradigm Towards Boosting Real-Hardware
Efficiency of Compact Neural Networks [29.46621102184345]
ハードウェアフレンドリーなコンパクトネットワークを開発するために,DepthShrinkerというフレームワークを提案する。
我々のフレームワークは、最先端のDNNや圧縮技術より優れたハードウェアフレンドリーなコンパクトネットワークを提供する。
論文 参考訳(メタデータ) (2022-06-02T02:32:47Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - AQD: Towards Accurate Fully-Quantized Object Detection [94.06347866374927]
本稿では,浮動小数点演算を除去するために,AQDと呼ばれる高精度な量子化オブジェクト検出ソリューションを提案する。
我々のAQDは、非常に低ビットのスキームの下での完全精度と比較して、同等またはそれ以上の性能を実現しています。
論文 参考訳(メタデータ) (2020-07-14T09:07:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。