Towards Integrating Epistemic Uncertainty Estimation into the Radiotherapy Workflow
- URL: http://arxiv.org/abs/2409.18628v1
- Date: Fri, 27 Sep 2024 10:55:58 GMT
- Title: Towards Integrating Epistemic Uncertainty Estimation into the Radiotherapy Workflow
- Authors: Marvin Tom Teichmann, Manasi Datar, Lisa Kratzke, Fernando Vega, Florin C. Ghesu,
- Abstract summary: The precision of contouring target structures and organs-at-risk (OAR) in radiotherapy planning is crucial for ensuring treatment efficacy and patient safety.
Recent advancements in deep learning (DL) have significantly improved OAR contouring performance.
However, the reliability of these models, especially in the presence of out-of-distribution (OOD) scenarios, remains a concern in clinical settings.
- Score: 40.07325268305058
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The precision of contouring target structures and organs-at-risk (OAR) in radiotherapy planning is crucial for ensuring treatment efficacy and patient safety. Recent advancements in deep learning (DL) have significantly improved OAR contouring performance, yet the reliability of these models, especially in the presence of out-of-distribution (OOD) scenarios, remains a concern in clinical settings. This application study explores the integration of epistemic uncertainty estimation within the OAR contouring workflow to enable OOD detection in clinically relevant scenarios, using specifically compiled data. Furthermore, we introduce an advanced statistical method for OOD detection to enhance the methodological framework of uncertainty estimation. Our empirical evaluation demonstrates that epistemic uncertainty estimation is effective in identifying instances where model predictions are unreliable and may require an expert review. Notably, our approach achieves an AUC-ROC of 0.95 for OOD detection, with a specificity of 0.95 and a sensitivity of 0.92 for implant cases, underscoring its efficacy. This study addresses significant gaps in the current research landscape, such as the lack of ground truth for uncertainty estimation and limited empirical evaluations. Additionally, it provides a clinically relevant application of epistemic uncertainty estimation in an FDA-approved and widely used clinical solution for OAR segmentation from Varian, a Siemens Healthineers company, highlighting its practical benefits.
Related papers
- Uncertainty Quantification on Clinical Trial Outcome Prediction [37.238845949535616]
We propose incorporating uncertainty quantification into clinical trial outcome predictions.
Our main goal is to enhance the model's ability to discern nuanced differences.
We have adopted a selective classification approach to fulfill our objective.
arXiv Detail & Related papers (2024-01-07T13:48:05Z) - Empirical Validation of Conformal Prediction for Trustworthy Skin Lesions Classification [3.7305040207339286]
We develop Conformal Prediction, Monte Carlo Dropout, and Evidential Deep Learning approaches to assess uncertainty quantification in deep neural networks.
Results: The experimental results demonstrate a significant enhancement in uncertainty quantification with the utilization of the Conformal Prediction method.
Our conclusion highlights a robust and consistent performance of conformal prediction across diverse testing conditions.
arXiv Detail & Related papers (2023-12-12T17:37:16Z) - Adaptive Uncertainty Estimation via High-Dimensional Testing on Latent
Representations [28.875819909902244]
Uncertainty estimation aims to evaluate the confidence of a trained deep neural network.
Existing uncertainty estimation approaches rely on low-dimensional distributional assumptions.
We propose a new framework using data-adaptive high-dimensional hypothesis testing for uncertainty estimation.
arXiv Detail & Related papers (2023-10-25T12:22:18Z) - Towards Reliable Medical Image Segmentation by utilizing Evidential Calibrated Uncertainty [52.03490691733464]
We introduce DEviS, an easily implementable foundational model that seamlessly integrates into various medical image segmentation networks.
By leveraging subjective logic theory, we explicitly model probability and uncertainty for the problem of medical image segmentation.
DeviS incorporates an uncertainty-aware filtering module, which utilizes the metric of uncertainty-calibrated error to filter reliable data.
arXiv Detail & Related papers (2023-01-01T05:02:46Z) - Uncertainty estimations methods for a deep learning model to aid in
clinical decision-making -- a clinician's perspective [0.0]
There are several deep learning-inspired uncertainty estimation techniques, but few are implemented on medical datasets.
We compared dropout variational inference (DO), test-time augmentation (TTA), conformal predictions, and single deterministic methods for estimating uncertainty.
It may be important to evaluate multiple estimations techniques before incorporating a model into clinical practice.
arXiv Detail & Related papers (2022-10-02T17:54:54Z) - On the Practicality of Deterministic Epistemic Uncertainty [106.06571981780591]
deterministic uncertainty methods (DUMs) achieve strong performance on detecting out-of-distribution data.
It remains unclear whether DUMs are well calibrated and can seamlessly scale to real-world applications.
arXiv Detail & Related papers (2021-07-01T17:59:07Z) - Clinical Outcome Prediction from Admission Notes using Self-Supervised
Knowledge Integration [55.88616573143478]
Outcome prediction from clinical text can prevent doctors from overlooking possible risks.
Diagnoses at discharge, procedures performed, in-hospital mortality and length-of-stay prediction are four common outcome prediction targets.
We propose clinical outcome pre-training to integrate knowledge about patient outcomes from multiple public sources.
arXiv Detail & Related papers (2021-02-08T10:26:44Z) - A standardized framework for risk-based assessment of treatment effect
heterogeneity in observational healthcare databases [60.07352590494571]
The aim of this study was to extend this approach to the observational setting using a standardized scalable framework.
We demonstrate our framework by evaluating the effect of angiotensin-converting enzyme (ACE) inhibitors versus beta blockers on three efficacy and six safety outcomes.
arXiv Detail & Related papers (2020-10-13T14:48:31Z) - Uncertainty estimation for classification and risk prediction on medical
tabular data [0.0]
This work advances the understanding of uncertainty estimation for classification and risk prediction on medical data.
In a data-scarce field such as healthcare, the ability to measure the uncertainty of a model's prediction could potentially lead to improved effectiveness of decision support tools.
arXiv Detail & Related papers (2020-04-13T08:46:41Z) - Interpretable Off-Policy Evaluation in Reinforcement Learning by
Highlighting Influential Transitions [48.91284724066349]
Off-policy evaluation in reinforcement learning offers the chance of using observational data to improve future outcomes in domains such as healthcare and education.
Traditional measures such as confidence intervals may be insufficient due to noise, limited data and confounding.
We develop a method that could serve as a hybrid human-AI system, to enable human experts to analyze the validity of policy evaluation estimates.
arXiv Detail & Related papers (2020-02-10T00:26:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.