論文の概要: Exploiting Motion Prior for Accurate Pose Estimation of Dashboard Cameras
- arxiv url: http://arxiv.org/abs/2409.18673v1
- Date: Fri, 27 Sep 2024 11:59:00 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-01 18:11:57.459489
- Title: Exploiting Motion Prior for Accurate Pose Estimation of Dashboard Cameras
- Title(参考訳): ダッシュボードカメラの正確な位置推定に先立つ爆発運動
- Authors: Yipeng Lu, Yifan Zhao, Haiping Wang, Zhiwei Ruan, Yuan Liu, Zhen Dong, Bisheng Yang,
- Abstract要約: 本研究では,ダッシュカム画像の正確なポーズ推定手法を提案する。
提案手法は,AUC5textdegreeにおけるポーズ推定基準よりも22%優れており,再投影誤差の少ない19%以上の画像に対してポーズ推定を行うことができる。
- 参考スコア(独自算出の注目度): 17.010390107028275
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Dashboard cameras (dashcams) record millions of driving videos daily, offering a valuable potential data source for various applications, including driving map production and updates. A necessary step for utilizing these dashcam data involves the estimation of camera poses. However, the low-quality images captured by dashcams, characterized by motion blurs and dynamic objects, pose challenges for existing image-matching methods in accurately estimating camera poses. In this study, we propose a precise pose estimation method for dashcam images, leveraging the inherent camera motion prior. Typically, image sequences captured by dash cameras exhibit pronounced motion prior, such as forward movement or lateral turns, which serve as essential cues for correspondence estimation. Building upon this observation, we devise a pose regression module aimed at learning camera motion prior, subsequently integrating these prior into both correspondences and pose estimation processes. The experiment shows that, in real dashcams dataset, our method is 22% better than the baseline for pose estimation in AUC5\textdegree, and it can estimate poses for 19% more images with less reprojection error in Structure from Motion (SfM).
- Abstract(参考訳): ダッシュボードカメラ(ダッシュボードカメラ)は、毎日何百万ものドライビングビデオを録画し、ドライビングマップの生産やアップデートなど、さまざまなアプリケーションに有用なデータソースを提供する。
これらのダッシュカムデータを利用するための必要なステップは、カメラのポーズを推定することである。
しかし、ダッシュカムが捉えた低画質の画像は、動きのぼやけやダイナミックな物体を特徴とし、カメラのポーズを正確に推定する既存の画像マッチング手法に挑戦する。
本研究では,ダッシュカム画像の正確なポーズ推定手法を提案する。
通常、ダッシュカメラによってキャプチャされた画像シーケンスは、前方の動きや横方向の旋回など、先行して顕著な動きを示す。
この観測に基づいて、カメラの動きを事前に学習することを目的としたポーズ回帰モジュールを考案し、その後、これらを対応とポーズ推定の両方に組み込む。
実験の結果,実際のダシュカムデータセットでは,AUC5におけるポーズ推定の基準値よりも22%よい結果が得られた。
関連論文リスト
- CamI2V: Camera-Controlled Image-to-Video Diffusion Model [11.762824216082508]
本稿では,明示的な物理的制約をモデル設計に統合する必要性を強調した。
ノイズ条件の新たな視点から,すべてのクロスフレーム関係をモデル化するためのエピポーラアテンションを提案する。
領域外画像への強い一般化を維持しつつ、RealEstate10K上でのカメラ制御性を25.5%向上させる。
論文 参考訳(メタデータ) (2024-10-21T12:36:27Z) - KRONC: Keypoint-based Robust Camera Optimization for 3D Car Reconstruction [58.04846444985808]
KRONCは、オブジェクトに関する事前知識を活用して、セマンティックキーポイントを通してその表現を再構築することで、ビューポーズを推論する新しいアプローチである。
車両シーンに焦点を当てたKRONCは、キーポイントのバックプロジェクションを特異点に収束させることを目的とした光最適化問題の解として、ビューの位置を推定することができる。
論文 参考訳(メタデータ) (2024-09-09T08:08:05Z) - Line-based 6-DoF Object Pose Estimation and Tracking With an Event Camera [19.204896246140155]
イベントカメラは、高いダイナミックレンジ、低レイテンシ、動きのぼけに対するレジリエンスといった顕著な特性を持っている。
イベントカメラを用いた平面オブジェクトや非平面オブジェクトに対するラインベースロバストポーズ推定と追跡手法を提案する。
論文 参考訳(メタデータ) (2024-08-06T14:36:43Z) - VICAN: Very Efficient Calibration Algorithm for Large Camera Networks [49.17165360280794]
ポースグラフ最適化手法を拡張する新しい手法を提案する。
我々は、カメラを含む二部グラフ、オブジェクトの動的進化、各ステップにおけるカメラオブジェクト間の相対変換について考察する。
我々のフレームワークは従来のPGOソルバとの互換性を維持しているが、その有効性はカスタマイズされた最適化方式の恩恵を受けている。
論文 参考訳(メタデータ) (2024-03-25T17:47:03Z) - Continuous Pose for Monocular Cameras in Neural Implicit Representation [65.40527279809474]
本稿では,時間的連続的な機能として単眼カメラのポーズを最適化することの有効性を示す。
提案手法を4つの異なる実験環境において活用する。
連続運動の仮定を用いて、ポーズの変化は実際には6度以下の自由度(DOF)を持つ多様体に生きることができる。
我々はこの低DOF動作表現を固有運動と呼び、vSLAM設定でのアプローチを用い、カメラ追跡性能を高く評価した。
論文 参考訳(メタデータ) (2023-11-28T13:14:58Z) - Extrinsic Camera Calibration with Semantic Segmentation [60.330549990863624]
本稿では,セグメンテーション情報を利用してパラメータ推定を自動化する,外部カメラキャリブレーション手法を提案する。
われわれのアプローチは、カメラのポーズの粗い初期測定と、車両に搭載されたライダーセンサーによる構築に依存している。
シミュレーションおよび実世界のデータを用いて,キャリブレーション結果の低誤差測定を行う。
論文 参考訳(メタデータ) (2022-08-08T07:25:03Z) - Towards view-invariant vehicle speed detection from driving simulator
images [0.31498833540989407]
複雑な3D-CNNアーキテクチャが単一のモデルを用いて暗黙的にビュー不変速度を学習できるかどうかという問題に対処する。
結果は、複数のビューのデータを持つ単一のモデルが、カメラ固有のモデルよりも精度が高いことを示しているため、非常に有望である。
論文 参考訳(メタデータ) (2022-06-01T09:14:45Z) - Attentive and Contrastive Learning for Joint Depth and Motion Field
Estimation [76.58256020932312]
単眼視システムからシーンの3次元構造とともにカメラの動きを推定することは複雑な作業である。
モノクロ映像からの3次元物体運動場推定のための自己教師付き学習フレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-13T16:45:01Z) - Towards Accurate Human Pose Estimation in Videos of Crowded Scenes [134.60638597115872]
我々は、時間的文脈を利用して新しいデータを収集する視点から、混雑したシーンのビデオにおける人間のポーズ推定を改善することに注力する。
あるフレームについては、過去のフレームから過去のポーズを転送し、その後のフレームから現在のフレームへ未来的なポーズを後退させ、ビデオにおける安定した人間のポーズ推定に繋がる。
このようにして、HIEチャレンジのテストデータセット上で、13本中7本、56.33本の平均w_APで最高の性能を達成する。
論文 参考訳(メタデータ) (2020-10-16T13:19:11Z) - Vehicle-Human Interactive Behaviors in Emergency: Data Extraction from
Traffic Accident Videos [0.0]
現在、緊急時の車両と人間の対話行動を研究するには、ほとんど利用できない実際の緊急状況において、大量のデータセットが必要である。
本稿では,実際の事故映像から対話行動データ(車と人間の軌跡)を抽出する,しかし便利な方法を提案する。
リアルタイムの事故ビデオからデータを抽出する主な課題は、記録カメラが校正されておらず、監視の角度が不明であるという事実にある。
論文 参考訳(メタデータ) (2020-03-02T22:17:46Z) - Unsupervised Learning of Camera Pose with Compositional Re-estimation [10.251550038802343]
入力ビデオシーケンスが与えられた場合、カメラのポーズ(つまりカメラの動き)を連続フレーム間で推定する。
本稿では,カメラポーズ推定のための合成再推定手法を提案する。
我々のアプローチは、予測されたカメラの動きを量的にも視覚的にも著しく改善する。
論文 参考訳(メタデータ) (2020-01-17T18:59:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。