論文の概要: A History-Guided Regional Partitioning Evolutionary Optimization for Solving the Flexible Job Shop Problem with Limited Multi-load Automated Guided Vehicles
- arxiv url: http://arxiv.org/abs/2409.18742v1
- Date: Fri, 27 Sep 2024 13:33:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-01 14:25:07.516330
- Title: A History-Guided Regional Partitioning Evolutionary Optimization for Solving the Flexible Job Shop Problem with Limited Multi-load Automated Guided Vehicles
- Title(参考訳): 限定多負荷自動案内車によるフレキシブルジョブショップ問題の解決のための歴史誘導型地域分割進化最適化
- Authors: Feige Liu, Chao Lu, Xin Li,
- Abstract要約: 本研究では,限られた多負荷AGVを用いたフレキシブルなジョブショップスケジューリング問題に対して,歴史誘導型地域分割アルゴリズム(HRPEO)を提案する。
その結果,HRPEOはFJSPMAの解決に有利であることがわかった。
- 参考スコア(独自算出の注目度): 6.3926046314748834
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In a flexible job shop environment, using Automated Guided Vehicles (AGVs) to transport jobs and process materials is an important way to promote the intelligence of the workshop. Compared with single-load AGVs, multi-load AGVs can improve AGV utilization, reduce path conflicts, etc. Therefore, this study proposes a history-guided regional partitioning algorithm (HRPEO) for the flexible job shop scheduling problem with limited multi-load AGVs (FJSPMA). First, the encoding and decoding rules are designed according to the characteristics of multi-load AGVs, and then the initialization rule based on the branch and bound method is used to generate the initial population. Second, to prevent the algorithm from falling into a local optimum, the algorithm adopts a regional partitioning strategy. This strategy divides the solution space into multiple regions and measures the potential of the regions. After that, cluster the regions into multiple clusters in each iteration, and selects individuals for evolutionary search based on the set of clusters. Third, a local search strategy is designed to improve the exploitation ability of the algorithm, which uses a greedy approach to optimize machines selection and transportation sequence according to the characteristics of FJSPMA. Finally, a large number of experiments are carried out on the benchmarks to test the performance of the algorithm. Compared with multiple advanced algorithms, the results show that the HRPEO has a better advantage in solving FJSPMA.
- Abstract(参考訳): フレキシブルな求人環境においては、自動誘導車両(AGV)を使用して仕事や加工材料を輸送することが、ワークショップのインテリジェンスを促進する重要な方法である。
シングルロードAGVと比較して、マルチロードAGVはAGVの利用を改善し、パスコンフリクトを低減できる。
そこで本研究では,限定マルチロードAGV (FJSPMA) を用いたフレキシブルなジョブショップスケジューリング問題に対して,歴史誘導型地域分割アルゴリズム (HRPEO) を提案する。
まず、多負荷AGVの特性に応じて符号化および復号規則を設計し、分岐法および境界法に基づく初期化規則を用いて初期集団を生成する。
第二に、アルゴリズムが局所的な最適状態に陥るのを防ぐため、アルゴリズムは局所的な分割戦略を採用する。
この戦略は、解空間を複数の領域に分割し、その領域のポテンシャルを測定する。
その後、各イテレーションでリージョンを複数のクラスタにクラスタ化し、クラスタのセットに基づいて進化的検索を行う個人を選択する。
第3に、FJSPMAの特性に応じて機械の選択と輸送順序を最適化するために、グレディなアプローチを用いてアルゴリズムの活用能力を向上させるために、局所探索戦略が設計されている。
最後に、アルゴリズムの性能をテストするために、ベンチマークで多数の実験を行う。
複数の高度なアルゴリズムと比較すると、HRPEOはFJSPMAを解くのに有利である。
関連論文リスト
- Faster Optimal Coalition Structure Generation via Offline Coalition Selection and Graph-Based Search [61.08720171136229]
本稿では,3つの革新的手法のハイブリッド化に基づく問題に対する新しいアルゴリズムSMARTを提案する。
これらの2つの手法は動的プログラミングに基づいており、評価のために選択された連立関係とアルゴリズムの性能の強力な関係を示す。
我々の手法は、問題にアプローチする新しい方法と、その分野に新しいレベルの精度をもたらす。
論文 参考訳(メタデータ) (2024-07-22T23:24:03Z) - Thompson sampling for improved exploration in GFlowNets [75.89693358516944]
生成フローネットワーク(Generative Flow Networks, GFlowNets)は、合成対象物上の分布からのサンプリングを、学習可能なアクションポリシーを用いたシーケンシャルな意思決定問題として扱う、アモータイズされた変分推論アルゴリズムである。
2つの領域において、TS-GFNは、過去の研究で使われたオフ・ポリティクス・サーベイ・ストラテジーよりも、探索を改善し、目標分布への収束を早くすることを示す。
論文 参考訳(メタデータ) (2023-06-30T14:19:44Z) - New Characterizations and Efficient Local Search for General Integer
Linear Programming [17.80124240223163]
本研究では境界解の概念を用いた線形プログラミング(ILP)の新たな特徴付けを提案する。
そこで我々は,局所探索アルゴリズムのLocal-ILPを開発した。
MIPLIBデータセットで行った実験は、大規模ハードILP問題の解法におけるアルゴリズムの有効性を示した。
論文 参考訳(メタデータ) (2023-04-29T07:22:07Z) - A Reinforcement Learning-assisted Genetic Programming Algorithm for Team
Formation Problem Considering Person-Job Matching [70.28786574064694]
解の質を高めるために強化学習支援遺伝的プログラミングアルゴリズム(RL-GP)を提案する。
効率的な学習を通じて得られる超ヒューリスティックなルールは、プロジェクトチームを形成する際の意思決定支援として利用することができる。
論文 参考訳(メタデータ) (2023-04-08T14:32:12Z) - Late Fusion Multi-view Clustering via Global and Local Alignment
Maximization [61.89218392703043]
マルチビュークラスタリング(MVC)は、異なるビューからの補完情報を最適に統合し、クラスタリング性能を改善する。
既存のアプローチの多くは、クラスタリングに最適な類似性行列を学ぶために、複数の事前定義された類似性を直接融合する。
これらの問題に対処するために、アライメントを通してレイトフュージョンMVCを提案する。
論文 参考訳(メタデータ) (2022-08-02T01:49:31Z) - Flipping the switch on local exploration: Genetic Algorithms with
Reversals [0.0]
著者らは、勾配のない探索手法が離散領域における最適解を提供するのに適していることを示した。
また、複数のローカル検索を使用することで、ローカル検索のパフォーマンスが向上することを示した。
提案したGA変種は,提案した問題を含む全てのベンチマークにおいて,最小平均コストであり,ICが構成成分よりも優れた性能を発揮することが観察された。
論文 参考訳(メタデータ) (2022-02-02T08:27:11Z) - Learning Space Partitions for Path Planning [54.475949279050596]
PlaLaMは2次元ナビゲーションタスクにおける既存の経路計画手法よりも優れており、特に難解な局所最適化の存在下では優れている。
これらは高マルチモーダルな実世界のタスクに移行し、コンパイラフェーズでは最大245%、分子設計では最大0.4の強いベースラインを0-1スケールで上回ります。
論文 参考訳(メタデータ) (2021-06-19T18:06:11Z) - Boosted Genetic Algorithm using Machine Learning for traffic control
optimization [4.642759477873937]
本稿では,信号化都市交差点における交通信号タイミングの最適化手法を提案する。
高速かつ信頼性の高い決定を生成することを目的として、高速実行機械学習(ML)アルゴリズムと信頼できる遺伝的アルゴリズム(GA)を組み合わせる。
新たなBGA-MLは,元のGAアルゴリズムよりもはるかに高速であり,非リカレントインシデント条件下でうまく適用可能であることを示す。
論文 参考訳(メタデータ) (2021-03-11T00:39:18Z) - Domain Adaptive Person Re-Identification via Coupling Optimization [58.567492812339566]
ドメイン適応型人物再識別(ReID)は、ドメインのギャップとターゲットシナリオに対するアノテーションの不足のために困難である。
本稿では,ドメイン不変写像 (DIM) 法とグローバル局所距離最適化 (GLO) を含む結合最適化手法を提案する。
GLOはターゲットドメインの教師なし設定でReIDモデルをトレーニングするために設計されている。
論文 参考訳(メタデータ) (2020-11-06T14:01:03Z) - A Hybrid Multi-Objective Carpool Route Optimization Technique using
Genetic Algorithm and A* Algorithm [0.0]
本研究では,カープール問題に対する最適経路を求めるためのGA-A*ハイブリッドアルゴリズムを提案する。
得られた経路は、ピックアップ/ドロップコストだけでなく、旅行・出先距離を最小化し、サービス提供者の利益を最大化する。
提案アルゴリズムはコルカタのソルトレイク地域に実装されている。
論文 参考訳(メタデータ) (2020-07-11T14:13:20Z) - A Tailored NSGA-III Instantiation for Flexible Job Shop Scheduling [18.401817124823832]
フレキシブルなジョブスケジューリング問題を解決するために、カスタマイズされた進化的アルゴリズムを提案する。
様々な局所探索戦略を用いて、より良い解の近傍パラメータを探索する。
実験結果は,計算予算の削減による優れた性能を示す。
論文 参考訳(メタデータ) (2020-04-14T14:49:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。