Learning from Demonstration with Implicit Nonlinear Dynamics Models
- URL: http://arxiv.org/abs/2409.18768v2
- Date: Tue, 1 Oct 2024 20:05:35 GMT
- Title: Learning from Demonstration with Implicit Nonlinear Dynamics Models
- Authors: Peter David Fagan, Subramanian Ramamoorthy,
- Abstract summary: We develop a recurrent neural network layer that includes a fixed nonlinear dynamical system with tunable dynamical properties for modelling temporal dynamics.
We validate the efficacy of our neural network layer on the task of reproducing human handwriting motions using the LASA Human Handwriting dataset.
- Score: 16.26835655544884
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning from Demonstration (LfD) is a useful paradigm for training policies that solve tasks involving complex motions, such as those encountered in robotic manipulation. In practice, the successful application of LfD requires overcoming error accumulation during policy execution, i.e. the problem of drift due to errors compounding over time and the consequent out-of-distribution behaviours. Existing works seek to address this problem through scaling data collection, correcting policy errors with a human-in-the-loop, temporally ensembling policy predictions or through learning a dynamical system model with convergence guarantees. In this work, we propose and validate an alternative approach to overcoming this issue. Inspired by reservoir computing, we develop a recurrent neural network layer that includes a fixed nonlinear dynamical system with tunable dynamical properties for modelling temporal dynamics. We validate the efficacy of our neural network layer on the task of reproducing human handwriting motions using the LASA Human Handwriting Dataset. Through empirical experiments we demonstrate that incorporating our layer into existing neural network architectures addresses the issue of compounding errors in LfD. Furthermore, we perform a comparative evaluation against existing approaches including a temporal ensemble of policy predictions and an Echo State Network (ESN) implementation. We find that our approach yields greater policy precision and robustness on the handwriting task while also generalising to multiple dynamics regimes and maintaining competitive latency scores.
Related papers
- Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
We address the challenge of sampling and remote estimation for autoregressive Markovian processes in a wireless network with statistically-identical agents.
Our goal is to minimize time-average estimation error and/or age of information with decentralized scalable sampling and transmission policies.
arXiv Detail & Related papers (2024-04-04T06:24:11Z) - SINDy-RL: Interpretable and Efficient Model-Based Reinforcement Learning [5.59265003686955]
We introduce SINDy-RL, a framework for combining SINDy and deep reinforcement learning.
SINDy-RL achieves comparable performance to state-of-the-art DRL algorithms.
We demonstrate the effectiveness of our approaches on benchmark control environments and challenging fluids problems.
arXiv Detail & Related papers (2024-03-14T05:17:39Z) - Semi-Supervised Learning of Dynamical Systems with Neural Ordinary
Differential Equations: A Teacher-Student Model Approach [10.20098335268973]
TS-NODE is the first semi-supervised approach to modeling dynamical systems with NODE.
We show significant performance improvements over a baseline Neural ODE model on multiple dynamical system modeling tasks.
arXiv Detail & Related papers (2023-10-19T19:17:12Z) - Brain-Inspired Spiking Neural Network for Online Unsupervised Time
Series Prediction [13.521272923545409]
We present a novel Continuous Learning-based Unsupervised Recurrent Spiking Neural Network Model (CLURSNN)
CLURSNN makes online predictions by reconstructing the underlying dynamical system using Random Delay Embedding.
We show that the proposed online time series prediction methodology outperforms state-of-the-art DNN models when predicting an evolving Lorenz63 dynamical system.
arXiv Detail & Related papers (2023-04-10T16:18:37Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
Physics-informed neural networks (PINNs) have effectively been demonstrated in solving forward and inverse differential equation problems.
PINNs are trapped in training failures when the target functions to be approximated exhibit high-frequency or multi-scale features.
In this paper, we propose to employ implicit gradient descent (ISGD) method to train PINNs for improving the stability of training process.
arXiv Detail & Related papers (2023-03-03T08:17:47Z) - Learning Robust Policy against Disturbance in Transition Dynamics via
State-Conservative Policy Optimization [63.75188254377202]
Deep reinforcement learning algorithms can perform poorly in real-world tasks due to discrepancy between source and target environments.
We propose a novel model-free actor-critic algorithm to learn robust policies without modeling the disturbance in advance.
Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.
arXiv Detail & Related papers (2021-12-20T13:13:05Z) - Inverse-Dirichlet Weighting Enables Reliable Training of Physics
Informed Neural Networks [2.580765958706854]
We describe and remedy a failure mode that may arise from multi-scale dynamics with scale imbalances during training of deep neural networks.
PINNs are popular machine-learning templates that allow for seamless integration of physical equation models with data.
For inverse modeling using sequential training, we find that inverse-Dirichlet weighting protects a PINN against catastrophic forgetting.
arXiv Detail & Related papers (2021-07-02T10:01:37Z) - An Ode to an ODE [78.97367880223254]
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the group O(d)
This nested system of two flows provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem.
arXiv Detail & Related papers (2020-06-19T22:05:19Z) - Online Reinforcement Learning Control by Direct Heuristic Dynamic
Programming: from Time-Driven to Event-Driven [80.94390916562179]
Time-driven learning refers to the machine learning method that updates parameters in a prediction model continuously as new data arrives.
It is desirable to prevent the time-driven dHDP from updating due to insignificant system event such as noise.
We show how the event-driven dHDP algorithm works in comparison to the original time-driven dHDP.
arXiv Detail & Related papers (2020-06-16T05:51:25Z) - Rectified Linear Postsynaptic Potential Function for Backpropagation in
Deep Spiking Neural Networks [55.0627904986664]
Spiking Neural Networks (SNNs) usetemporal spike patterns to represent and transmit information, which is not only biologically realistic but also suitable for ultra-low-power event-driven neuromorphic implementation.
This paper investigates the contribution of spike timing dynamics to information encoding, synaptic plasticity and decision making, providing a new perspective to design of future DeepSNNs and neuromorphic hardware systems.
arXiv Detail & Related papers (2020-03-26T11:13:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.