CESNET-TimeSeries24: Time Series Dataset for Network Traffic Anomaly Detection and Forecasting
- URL: http://arxiv.org/abs/2409.18874v1
- Date: Fri, 27 Sep 2024 16:10:11 GMT
- Title: CESNET-TimeSeries24: Time Series Dataset for Network Traffic Anomaly Detection and Forecasting
- Authors: Josef Koumar, Karel Hynek, Tomáš Čejka, Pavel Šiška,
- Abstract summary: This manuscript introduces a dataset comprising time series data of network entities' behavior.
The dataset was created from 40 weeks of network traffic of 275 thousand active IP addresses.
It provides valuable insights into the practical deployment of forecast-based anomaly detection approaches.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Anomaly detection in network traffic is crucial for maintaining the security of computer networks and identifying malicious activities. One of the primary approaches to anomaly detection are methods based on forecasting. Nevertheless, extensive real-world network datasets for forecasting and anomaly detection techniques are missing, potentially causing performance overestimation of anomaly detection algorithms. This manuscript addresses this gap by introducing a dataset comprising time series data of network entities' behavior, collected from the CESNET3 network. The dataset was created from 40 weeks of network traffic of 275 thousand active IP addresses. The ISP origin of the presented data ensures a high level of variability among network entities, which forms a unique and authentic challenge for forecasting and anomaly detection models. It provides valuable insights into the practical deployment of forecast-based anomaly detection approaches.
Related papers
- TII-SSRC-23 Dataset: Typological Exploration of Diverse Traffic Patterns
for Intrusion Detection [0.5261718469769447]
Existing datasets often fall short, lacking the necessary diversity and alignment with the contemporary network environment.
This paper introduces TII-SSRC-23, a novel and comprehensive dataset designed to overcome these challenges.
arXiv Detail & Related papers (2023-09-14T05:23:36Z) - Leveraging a Probabilistic PCA Model to Understand the Multivariate
Statistical Network Monitoring Framework for Network Security Anomaly
Detection [64.1680666036655]
We revisit anomaly detection techniques based on PCA from a probabilistic generative model point of view.
We have evaluated the mathematical model using two different datasets.
arXiv Detail & Related papers (2023-02-02T13:41:18Z) - Self-Supervised and Interpretable Anomaly Detection using Network
Transformers [1.0705399532413615]
This paper introduces the Network Transformer (NeT) model for anomaly detection.
NeT incorporates the graph structure of the communication network in order to improve interpretability.
The presented approach was tested by evaluating the successful detection of anomalies in an Industrial Control System.
arXiv Detail & Related papers (2022-02-25T22:05:59Z) - Federated Variational Learning for Anomaly Detection in Multivariate
Time Series [13.328883578980237]
We propose an unsupervised time series anomaly detection framework in a federated fashion.
We leave the training data distributed at the edge to learn a shared Variational Autoencoder (VAE) based on Convolutional Gated Recurrent Unit (ConvGRU) model.
Experiments on three real-world networked sensor datasets illustrate the advantage of our approach over other state-of-the-art models.
arXiv Detail & Related papers (2021-08-18T22:23:15Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Few-shot Network Anomaly Detection via Cross-network Meta-learning [45.8111239825361]
We propose a new family of graph neural networks -- Graph Deviation Networks (GDN)
GDN can leverage a small number of labeled anomalies for enforcing statistically significant deviations between abnormal and normal nodes on a network.
We equip the proposed GDN with a new cross-network meta-learning algorithm to realize few-shot network anomaly detection.
arXiv Detail & Related papers (2021-02-22T16:42:37Z) - On the Usage of Generative Models for Network Anomaly Detection in
Multivariate Time-Series [3.1790432590377242]
We introduce Net-GAN, a novel approach to network anomaly detection in time-series.
We exploit the concepts behind generative models to conceive Net-VAE, a complementary approach to Net-GAN.
We evaluate Net-GAN and Net-VAE in different monitoring scenarios, including anomaly detection in IoT sensor data, and intrusion detection in network measurements.
arXiv Detail & Related papers (2020-10-16T10:22:25Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
We review the methods that have been applied to network data with the purpose of developing an intrusion detector.
We discuss the techniques used for the capture, preparation and transformation of the data, as well as, the data mining and evaluation methods.
As a result of this literature review, we investigate some open issues which will need to be considered for further research in the area of network security.
arXiv Detail & Related papers (2020-01-27T11:21:05Z) - Adaptive Anomaly Detection for IoT Data in Hierarchical Edge Computing [71.86955275376604]
We propose an adaptive anomaly detection approach for hierarchical edge computing (HEC) systems to solve this problem.
We design an adaptive scheme to select one of the models based on the contextual information extracted from input data, to perform anomaly detection.
We evaluate our proposed approach using a real IoT dataset, and demonstrate that it reduces detection delay by 84% while maintaining almost the same accuracy as compared to offloading detection tasks to the cloud.
arXiv Detail & Related papers (2020-01-10T05:29:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.