論文の概要: Explainable Artifacts for Synthetic Western Blot Source Attribution
- arxiv url: http://arxiv.org/abs/2409.18881v1
- Date: Fri, 27 Sep 2024 16:18:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-01 08:01:28.126137
- Title: Explainable Artifacts for Synthetic Western Blot Source Attribution
- Title(参考訳): 合成西ブロット源属性のための説明可能なアーティファクト
- Authors: João Phillipe Cardenuto, Sara Mandelli, Daniel Moreira, Paolo Bestagini, Edward Delp, Anderson Rocha,
- Abstract要約: 近年の人工知能の進歩により、生成モデルは原始的なものと区別できない合成科学的イメージを生成できるようになった。
本研究の目的は、最先端の生成モデルによって生成された説明可能なアーティファクトを特定し、それらをオープンセットの識別とソース属性に活用することである。
- 参考スコア(独自算出の注目度): 18.798003207293746
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in artificial intelligence have enabled generative models to produce synthetic scientific images that are indistinguishable from pristine ones, posing a challenge even for expert scientists habituated to working with such content. When exploited by organizations known as paper mills, which systematically generate fraudulent articles, these technologies can significantly contribute to the spread of misinformation about ungrounded science, potentially undermining trust in scientific research. While previous studies have explored black-box solutions, such as Convolutional Neural Networks, for identifying synthetic content, only some have addressed the challenge of generalizing across different models and providing insight into the artifacts in synthetic images that inform the detection process. This study aims to identify explainable artifacts generated by state-of-the-art generative models (e.g., Generative Adversarial Networks and Diffusion Models) and leverage them for open-set identification and source attribution (i.e., pointing to the model that created the image).
- Abstract(参考訳): 近年の人工知能の進歩により、生成モデルは原始的なものと区別できない合成科学的イメージを作成できるようになった。
不正な記事を体系的に生成する製紙所として知られる組織によって活用されると、これらの技術は根拠のない科学に関する誤報の拡散に大きく寄与し、科学研究への信頼を損なう可能性がある。
以前の研究では、合成コンテンツを識別するための畳み込みニューラルネットワークのようなブラックボックスソリューションを探索してきたが、異なるモデルにまたがって一般化し、検出過程を知らせる合成画像のアーティファクトに関する洞察を提供するという課題に対処する者はほとんどいなかった。
本研究の目的は、最先端の生成モデル(ジェネレーティブ・ディフュージョン・モデル、ジェネレーティブ・ディフュージョン・モデル)によって生成された説明可能なアーティファクトを特定し、それらをオープン・セットの識別とソース属性(すなわち、画像を作成するモデルを指し示す)に活用することである。
関連論文リスト
- Synthetic Photography Detection: A Visual Guidance for Identifying Synthetic Images Created by AI [0.0]
合成写真は、広範囲の脅威俳優によって悪用されることがある。
生成した画像中の可視人工物は、その合成原点を訓練された眼に示している。
これらのアーティファクトを分類し、例を示し、検出する上での課題について議論し、我々の研究の実践的応用を提案し、今後の研究方向性を概説する。
論文 参考訳(メタデータ) (2024-08-12T08:58:23Z) - Rethinking the Up-Sampling Operations in CNN-based Generative Network
for Generalizable Deepfake Detection [86.97062579515833]
我々は、アップサンプリング操作から生じる一般化された構造的アーティファクトをキャプチャし、特徴付ける手段として、NPR(Neighboring Pixel Relationships)の概念を紹介した。
tft28の異なる生成モデルによって生成されたサンプルを含む、オープンワールドデータセット上で包括的な分析を行う。
この分析は、新しい最先端のパフォーマンスを確立し、既存の手法よりも優れたtft11.6%の向上を示している。
論文 参考訳(メタデータ) (2023-12-16T14:27:06Z) - Perceptual Artifacts Localization for Image Synthesis Tasks [59.638307505334076]
我々は10,168個の画像からなる新しいデータセットを導入し,それぞれに知覚的アーティファクトラベルを付加した。
提案したデータセットに基づいてトレーニングされたセグメンテーションモデルは、さまざまなタスクにまたがるアーティファクトを効果的にローカライズする。
生成した画像の知覚的アーティファクトをシームレスに修正する,革新的なズームイン・インペインティングパイプラインを提案する。
論文 参考訳(メタデータ) (2023-10-09T10:22:08Z) - The Age of Synthetic Realities: Challenges and Opportunities [85.058932103181]
我々は、有害な合成生成を識別し、それらを現実と区別することのできる法医学的手法の開発における重要な必要性を強調した。
我々の焦点は、画像、ビデオ、オーディオ、テキストなどの様々なメディアの形式にまで及んでいる。
この研究は、AI生成技術の急速な進歩と、法科学の基本原理に対する影響により、最も重要である。
論文 参考訳(メタデータ) (2023-06-09T15:55:10Z) - Using generative AI to investigate medical imagery models and datasets [21.814095540433115]
AIベースのモデルの信頼性を高めるには、説明が必要だ。
本稿では,チームベースの専門知識を活用した視覚的自動説明手法を提案する。
3つの医用画像モダリティにまたがる8つの予測課題について実験を行った。
論文 参考訳(メタデータ) (2023-06-01T17:59:55Z) - Intriguing properties of synthetic images: from generative adversarial
networks to diffusion models [19.448196464632]
実際の画像と偽画像を区別する上で,どの画像の特徴がより優れているかを知ることが重要である。
本稿では, 実画像と生成画像の最も法学的に関係した特徴を発見することを目的とした, 異なる家系の多数の画像生成装置の系統的研究について報告する。
論文 参考訳(メタデータ) (2023-04-13T11:13:19Z) - On the detection of synthetic images generated by diffusion models [18.12766911229293]
拡散モデル(DM)に基づく手法が注目されている。
DMはテキストベースのビジュアルコンテンツの作成を可能にする。
悪意のあるユーザーは、自分の攻撃に完全に適合した偽のメディアを生成し、配布することができる。
論文 参考訳(メタデータ) (2022-11-01T18:10:55Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
本研究では,最新のテキスト・画像生成モデルから生成した合成画像が,画像認識タスクにどのように利用できるかを検討した。
本稿では,既存の生成モデルからの合成データの強大さと欠点を示し,認識タスクに合成データを適用するための戦略を提案する。
論文 参考訳(メタデータ) (2022-10-14T06:54:24Z) - Artificial Fingerprinting for Generative Models: Rooting Deepfake
Attribution in Training Data [64.65952078807086]
光現実性画像生成は、GAN(Generative Adversarial Network)のブレークスルーにより、新たな品質レベルに達した。
しかし、このようなディープフェイクのダークサイド、すなわち生成されたメディアの悪意ある使用は、視覚的誤報に関する懸念を提起する。
我々は,モデルに人工指紋を導入することによって,深度検出の積極的な,持続可能なソリューションを模索する。
論文 参考訳(メタデータ) (2020-07-16T16:49:55Z) - Reverse Engineering Configurations of Neural Text Generation Models [86.9479386959155]
モデル選択の結果、機械が生成したテキストに現れるアーティファクトの研究は、新しい研究領域である。
我々は、モデリング選択が検出可能なアーティファクトを生成テキストに残すかどうかを確認するために、広範囲な診断テストを実行する。
我々の重要な発見は、厳密な実験によって裏付けられ、そのような成果物が存在することと、生成されたテキストのみを観察することで異なるモデリング選択を推測できることである。
論文 参考訳(メタデータ) (2020-04-13T21:02:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。