論文の概要: The Discovery Engine: A Framework for AI-Driven Synthesis and Navigation of Scientific Knowledge Landscapes
- arxiv url: http://arxiv.org/abs/2505.17500v1
- Date: Fri, 23 May 2025 05:51:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-26 18:08:33.847203
- Title: The Discovery Engine: A Framework for AI-Driven Synthesis and Navigation of Scientific Knowledge Landscapes
- Title(参考訳): Discovery Engine: 科学知識景観のAI駆動合成とナビゲーションのためのフレームワーク
- Authors: Vladimir Baulin, Austin Cook, Daniel Friedman, Janna Lumiruusu, Andrew Pashea, Shagor Rahman, Benedikt Waldeck,
- Abstract要約: 本稿では,文献を科学的領域の統一的,計算的に抽出可能な表現に変換するフレームワークであるDiscovery Engineを紹介する。
Discovery Engineは、AIが強化した科学調査と発見の加速のための新しいパラダイムを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The prevailing model for disseminating scientific knowledge relies on individual publications dispersed across numerous journals and archives. This legacy system is ill suited to the recent exponential proliferation of publications, contributing to insurmountable information overload, issues surrounding reproducibility and retractions. We introduce the Discovery Engine, a framework to address these challenges by transforming an array of disconnected literature into a unified, computationally tractable representation of a scientific domain. Central to our approach is the LLM-driven distillation of publications into structured "knowledge artifacts," instances of a universal conceptual schema, complete with verifiable links to source evidence. These artifacts are then encoded into a high-dimensional Conceptual Tensor. This tensor serves as the primary, compressed representation of the synthesized field, where its labeled modes index scientific components (concepts, methods, parameters, relations) and its entries quantify their interdependencies. The Discovery Engine allows dynamic "unrolling" of this tensor into human-interpretable views, such as explicit knowledge graphs (the CNM graph) or semantic vector spaces, for targeted exploration. Crucially, AI agents operate directly on the graph using abstract mathematical and learned operations to navigate the knowledge landscape, identify non-obvious connections, pinpoint gaps, and assist researchers in generating novel knowledge artifacts (hypotheses, designs). By converting literature into a structured tensor and enabling agent-based interaction with this compact representation, the Discovery Engine offers a new paradigm for AI-augmented scientific inquiry and accelerated discovery.
- Abstract(参考訳): 科学的知識を広めるための一般的なモデルは、多くの雑誌やアーカイブに散在する個々の出版物に依存している。
このレガシシステムは、最近の出版物の急激な増加に不適であり、過剰な情報、再現性と取り消しに関する問題に寄与している。
本稿では,これらの課題に対処するためのフレームワークであるDiscovery Engineを紹介した。
我々のアプローチの中心は、出版物を構造化された「知識アーティファクト」に蒸留することである。
これらのアーティファクトはその後、高次元の概念テンソルに符号化される。
このテンソルは、そのラベル付きモードが科学的な構成要素(概念、方法、パラメータ、関係)をインデックスし、その要素がその相互依存性を定量化する合成場の一次圧縮表現として機能する。
Discovery Engineは、このテンソルを人間の解釈可能なビュー(例えば明示的な知識グラフ(CNMグラフ)やセマンティックベクトル空間)に動的に"アンロール"することで、探索を対象とする。
重要なことに、AIエージェントは抽象的な数学的および学習された操作を使用してグラフ上で直接操作し、知識ランドスケープをナビゲートし、不必要な接続を特定し、ピンポイントギャップを特定し、研究者が新しい知識アーティファクト(仮説、デザイン)を作成するのを助ける。
文学を構造化テンソルに変換し、このコンパクトな表現とエージェントベースの対話を可能にすることで、ディスカバリエンジンはAIによる科学的な探求と加速された発見のための新しいパラダイムを提供する。
関連論文リスト
- What's In Your Field? Mapping Scientific Research with Knowledge Graphs and Large Language Models [4.8261605642238745]
大規模言語モデル(LLM)は、大きな仕事の全体にわたる詳細な関係を捉えることができない。
構造化された表現は、自然に補完する -- コーパス全体にわたって体系的な分析を可能にする。
文献全体に関する正確な質問に答えるシステムを試作する。
論文 参考訳(メタデータ) (2025-03-12T23:24:40Z) - SciAgents: Automating scientific discovery through multi-agent intelligent graph reasoning [0.0]
人工知能の鍵となる課題は、科学的理解を自律的に進めるシステムを作ることである。
3つのコア概念を活用するアプローチであるSciAgentsを提案する。
この枠組みは研究仮説を自律的に生成し、基礎となるメカニズム、設計原則、予期せぬ材料特性を解明する。
我々のケーススタディでは、生成AI、オントロジ表現、マルチエージェントモデリングを組み合わせて、生物学的システムに似た知能の群を活用できるスケーラブルな能力を実証している。
論文 参考訳(メタデータ) (2024-09-09T12:25:10Z) - Accelerating Scientific Discovery with Generative Knowledge Extraction, Graph-Based Representation, and Multimodal Intelligent Graph Reasoning [0.0]
我々は1000の科学論文からなるデータセットを、オントロジ知識グラフに変換した。
我々はノード度を計算し、コミュニティと接続性を同定し、クラスタリング係数とピボットノード間の重心性を評価した。
グラフは本質的に無スケールの性質を持ち、高連結であり、グラフ推論に使用できる。
論文 参考訳(メタデータ) (2024-03-18T17:30:27Z) - AceMap: Knowledge Discovery through Academic Graph [90.12694363549483]
AceMapは学術グラフによる知識発見のために設計された学術システムである。
本稿では,AceMapデータベースを構築するための高度なデータベース構築手法を提案する。
AceMapは、学術的アイデアの進化をトレースするなど、高度な分析機能を提供する。
論文 参考訳(メタデータ) (2024-03-05T01:17:56Z) - Large Language Models for Scientific Synthesis, Inference and
Explanation [56.41963802804953]
大規模言語モデルがどのように科学的合成、推論、説明を行うことができるかを示す。
我々は,この「知識」を科学的文献から合成することで,大きな言語モデルによって強化できることを示す。
このアプローチは、大きな言語モデルが機械学習システムの予測を説明することができるというさらなる利点を持っている。
論文 参考訳(メタデータ) (2023-10-12T02:17:59Z) - State of the Art on Diffusion Models for Visual Computing [191.6168813012954]
本稿では,拡散モデルの基本数学的概念,実装の詳細,および一般的な安定拡散モデルの設計選択を紹介する。
また,拡散に基づく生成と編集に関する文献の急速な発展を概観する。
利用可能なデータセット、メトリクス、オープンな課題、社会的意味について議論する。
論文 参考訳(メタデータ) (2023-10-11T05:32:29Z) - Recognizing Unseen Objects via Multimodal Intensive Knowledge Graph
Propagation [68.13453771001522]
画像の領域と対応するセマンティック埋め込みとをマッチングする多モード集中型ZSLフレームワークを提案する。
我々は、大規模な実世界のデータに基づいて、広範囲な実験を行い、そのモデルを評価する。
論文 参考訳(メタデータ) (2023-06-14T13:07:48Z) - Semantic and Relational Spaces in Science of Science: Deep Learning
Models for Article Vectorisation [4.178929174617172]
我々は、自然言語処理(NLP)とグラフニューラルネットワーク(GNN)を用いて、記事の意味的・関係的な側面に基づく文書レベルの埋め込みに焦点を当てる。
論文のセマンティックな空間をNLPでエンコードできるのに対し、GNNでは研究コミュニティの社会的実践をエンコードするリレーショナルな空間を構築することができる。
論文 参考訳(メタデータ) (2020-11-05T14:57:41Z) - Generating Knowledge Graphs by Employing Natural Language Processing and
Machine Learning Techniques within the Scholarly Domain [1.9004296236396943]
本稿では、自然言語処理と機械学習を利用して研究論文から実体や関係を抽出する新しいアーキテクチャを提案する。
本研究では,現在最先端の自然言語処理ツールとテキストマイニングツールを用いて,知識抽出の課題に取り組む。
セマンティックWebドメイン内の論文26,827件から抽出した109,105件のトリプルを含む科学知識グラフを作成した。
論文 参考訳(メタデータ) (2020-10-28T08:31:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。