Improving Academic Skills Assessment with NLP and Ensemble Learning
- URL: http://arxiv.org/abs/2409.19013v3
- Date: Sun, 13 Oct 2024 05:04:47 GMT
- Title: Improving Academic Skills Assessment with NLP and Ensemble Learning
- Authors: Xinyi Huang, Yingyi Wu, Danyang Zhang, Jiacheng Hu, Yujian Long,
- Abstract summary: This study addresses the critical challenges of assessing foundational academic skills by leveraging advancements in natural language processing (NLP)
Our approach integrates multiple state-of-the-art NLP models, including BERT, RoBERTa, BART, DeBERTa, and T5.
The methodology involves detailed data preprocessing, feature extraction, and pseudo-label learning to optimize model performance.
- Score: 7.803554057024728
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This study addresses the critical challenges of assessing foundational academic skills by leveraging advancements in natural language processing (NLP). Traditional assessment methods often struggle to provide timely and comprehensive feedback on key cognitive and linguistic aspects, such as coherence, syntax, and analytical reasoning. Our approach integrates multiple state-of-the-art NLP models, including BERT, RoBERTa, BART, DeBERTa, and T5, within an ensemble learning framework. These models are combined through stacking techniques using LightGBM and Ridge regression to enhance predictive accuracy. The methodology involves detailed data preprocessing, feature extraction, and pseudo-label learning to optimize model performance. By incorporating sophisticated NLP techniques and ensemble learning, this study significantly improves the accuracy and efficiency of assessments, offering a robust solution that surpasses traditional methods and opens new avenues for educational technology research focused on enhancing core academic competencies.
Related papers
- Enhancing literature review with LLM and NLP methods. Algorithmic trading case [0.0]
This study utilizes machine learning algorithms to analyze and organize knowledge in the field of algorithmic trading.
By filtering a dataset of 136 million research papers, we identified 14,342 relevant articles published between 1956 and Q1 2020.
arXiv Detail & Related papers (2024-10-23T13:37:27Z) - FecTek: Enhancing Term Weight in Lexicon-Based Retrieval with Feature Context and Term-level Knowledge [54.61068946420894]
We introduce an innovative method by introducing FEature Context and TErm-level Knowledge modules.
To effectively enrich the feature context representations of term weight, the Feature Context Module (FCM) is introduced.
We also develop a term-level knowledge guidance module (TKGM) for effectively utilizing term-level knowledge to intelligently guide the modeling process of term weight.
arXiv Detail & Related papers (2024-04-18T12:58:36Z) - A Unified and General Framework for Continual Learning [58.72671755989431]
Continual Learning (CL) focuses on learning from dynamic and changing data distributions while retaining previously acquired knowledge.
Various methods have been developed to address the challenge of catastrophic forgetting, including regularization-based, Bayesian-based, and memory-replay-based techniques.
This research aims to bridge this gap by introducing a comprehensive and overarching framework that encompasses and reconciles these existing methodologies.
arXiv Detail & Related papers (2024-03-20T02:21:44Z) - Leveraging Large Language Models for Enhanced NLP Task Performance through Knowledge Distillation and Optimized Training Strategies [0.8704964543257245]
This study explores a three-phase training strategy that harnesses GPT-4's capabilities to enhance the BERT model's performance on NER.
We train BERT using a mix of original and LLM-annotated data, analyzing the efficacy of LLM annotations against traditional methods.
Our results indicate that a strategic mix of distilled and original data markedly elevates the NER capabilities of BERT.
arXiv Detail & Related papers (2024-02-14T16:10:45Z) - Advancing NLP Models with Strategic Text Augmentation: A Comprehensive
Study of Augmentation Methods and Curriculum Strategies [0.0]
This study conducts a thorough evaluation of text augmentation techniques across a variety of datasets and natural language processing (NLP) tasks.
It examines the effectiveness of these techniques in augmenting training sets to improve performance in tasks such as topic classification, sentiment analysis, and offensive language detection.
arXiv Detail & Related papers (2024-02-14T12:41:09Z) - Exploring Federated Unlearning: Analysis, Comparison, and Insights [101.64910079905566]
federated unlearning enables the selective removal of data from models trained in federated systems.
This paper examines existing federated unlearning approaches, examining their algorithmic efficiency, impact on model accuracy, and effectiveness in preserving privacy.
We propose the OpenFederatedUnlearning framework, a unified benchmark for evaluating federated unlearning methods.
arXiv Detail & Related papers (2023-10-30T01:34:33Z) - Distilling Knowledge from Resource Management Algorithms to Neural
Networks: A Unified Training Assistance Approach [18.841969905928337]
knowledge distillation (KD) based algorithm distillation (AD) method is proposed in this paper to improve the performance and convergence speed of the NN-based method.
This research paves the way for the integration of traditional optimization insights and emerging NN techniques in wireless communication system optimization.
arXiv Detail & Related papers (2023-08-15T00:30:58Z) - On Efficient Training of Large-Scale Deep Learning Models: A Literature
Review [90.87691246153612]
The field of deep learning has witnessed significant progress, particularly in computer vision (CV), natural language processing (NLP), and speech.
The use of large-scale models trained on vast amounts of data holds immense promise for practical applications.
With the increasing demands on computational capacity, a comprehensive summarization on acceleration techniques of training deep learning models is still much anticipated.
arXiv Detail & Related papers (2023-04-07T11:13:23Z) - GLUECons: A Generic Benchmark for Learning Under Constraints [102.78051169725455]
In this work, we create a benchmark that is a collection of nine tasks in the domains of natural language processing and computer vision.
We model external knowledge as constraints, specify the sources of the constraints for each task, and implement various models that use these constraints.
arXiv Detail & Related papers (2023-02-16T16:45:36Z) - A Field Guide to Federated Optimization [161.3779046812383]
Federated learning and analytics are a distributed approach for collaboratively learning models (or statistics) from decentralized data.
This paper provides recommendations and guidelines on formulating, designing, evaluating and analyzing federated optimization algorithms.
arXiv Detail & Related papers (2021-07-14T18:09:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.