論文の概要: Responsible AI in Open Ecosystems: Reconciling Innovation with Risk Assessment and Disclosure
- arxiv url: http://arxiv.org/abs/2409.19104v1
- Date: Fri, 27 Sep 2024 19:09:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 04:30:57.901435
- Title: Responsible AI in Open Ecosystems: Reconciling Innovation with Risk Assessment and Disclosure
- Title(参考訳): オープンエコシステムにおける責任あるAI - リスクアセスメントと開示によるイノベーションの再構築
- Authors: Mahasweta Chakraborti, Bert Joseph Prestoza, Nicholas Vincent, Seth Frey,
- Abstract要約: 私たちは、モデルパフォーマンス評価がモデル制限やバイアス、その他のリスクの予測を通知したり、妨げたりする方法について焦点を当てています。
我々の発見は、倫理的取り込みを動機づけつつ、オープンソースのイノベーションを維持するための介入やポリシーを設計するAI提供者や法学者に通知することができる。
- 参考スコア(独自算出の注目度): 4.578401882034969
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The rapid scaling of AI has spurred a growing emphasis on ethical considerations in both development and practice. This has led to the formulation of increasingly sophisticated model auditing and reporting requirements, as well as governance frameworks to mitigate potential risks to individuals and society. At this critical juncture, we review the practical challenges of promoting responsible AI and transparency in informal sectors like OSS that support vital infrastructure and see widespread use. We focus on how model performance evaluation may inform or inhibit probing of model limitations, biases, and other risks. Our controlled analysis of 7903 Hugging Face projects found that risk documentation is strongly associated with evaluation practices. Yet, submissions (N=789) from the platform's most popular competitive leaderboard showed less accountability among high performers. Our findings can inform AI providers and legal scholars in designing interventions and policies that preserve open-source innovation while incentivizing ethical uptake.
- Abstract(参考訳): AIの急速な拡大は、開発と実践の両方において倫理的配慮に重点が置かれている。
これは、個人や社会に対する潜在的なリスクを軽減するためのガバナンスフレームワークと同様に、ますます洗練されたモデル監査と報告要件の定式化につながった。
この批判的な判断において、我々は、重要なインフラをサポートし、広く利用されるOSSのような非公式な分野において、責任あるAIと透明性を促進するという実践的な課題をレビューする。
私たちは、モデルパフォーマンス評価がモデル制限やバイアス、その他のリスクの予測を通知したり、妨げたりする方法について焦点を当てています。
7903 Hugging Faceプロジェクトのコントロール分析では、リスクドキュメントが評価プラクティスと強く関連していることが分かりました。
しかし、プラットフォームで最も人気のある競争リーダーボードからの提出(N=789)は、ハイパフォーマーの間では説明責任が低かった。
我々の発見は、倫理的取り込みを動機づけつつ、オープンソースのイノベーションを維持するための介入やポリシーを設計するAI提供者や法学者に通知することができる。
関連論文リスト
- AI and the Transformation of Accountability and Discretion in Urban Governance [1.9152655229960793]
この論文は、人間の裁量を再配置し、特定のタイプの説明責任を再形成するAIの可能性を強調している。
責任あるAI採用のためのフレームワークを推進し、都市のガバナンスが適応的で透明性があり、パブリックな価値と一致し続けることを保証します。
論文 参考訳(メタデータ) (2025-02-18T18:11:39Z) - Towards Trustworthy Retrieval Augmented Generation for Large Language Models: A Survey [92.36487127683053]
Retrieval-Augmented Generation (RAG)は、AIGC(AIGC)の課題に対処するために設計された高度な技術である。
RAGは信頼性と最新の外部知識を提供し、幻覚を減らし、幅広いタスクで関連するコンテキストを保証する。
RAGの成功と可能性にもかかわらず、最近の研究により、RAGパラダイムはプライバシーの懸念、敵対的攻撃、説明責任の問題など、新たなリスクももたらしていることが示されている。
論文 参考訳(メタデータ) (2025-02-08T06:50:47Z) - Human services organizations and the responsible integration of AI: Considering ethics and contextualizing risk(s) [0.0]
著者らは、AIデプロイメントに関する倫理的懸念は、実装コンテキストや特定のユースケースによって大きく異なると主張している。
彼らは、データ感度、専門的な監視要件、クライアントの幸福に対する潜在的影響などの要因を考慮に入れた、次元的リスクアセスメントアプローチを提案する。
論文 参考訳(メタデータ) (2025-01-20T19:38:21Z) - Engineering Trustworthy AI: A Developer Guide for Empirical Risk Minimization [53.80919781981027]
信頼できるAIのための重要な要件は、経験的リスク最小化のコンポーネントの設計選択に変換できる。
私たちは、AIの信頼性の新たな標準を満たすAIシステムを構築するための実用的なガイダンスを提供したいと思っています。
論文 参考訳(メタデータ) (2024-10-25T07:53:32Z) - Risks and NLP Design: A Case Study on Procedural Document QA [52.557503571760215]
より具体的なアプリケーションやユーザに対して分析を専門化すれば,ユーザに対するリスクや害の明確な評価が可能になる,と我々は主張する。
リスク指向のエラー分析を行い、リスクの低減とパフォーマンスの向上を図り、将来のシステムの設計を通知する。
論文 参考訳(メタデータ) (2024-08-16T17:23:43Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
汎用AIは、一般大衆がAIを使用してそのパワーを利用するための障壁を下げたようだ。
本稿では,AI利用事例とその影響を推測し,評価するためのフレームワークであるPartICIP-AIを紹介する。
論文 参考訳(メタデータ) (2024-03-21T19:12:37Z) - A Safe Harbor for AI Evaluation and Red Teaming [124.89885800509505]
一部の研究者は、そのような研究の実施や研究成果の公表が、アカウント停止や法的報復につながることを恐れている。
我々は、主要なAI開発者が法的、技術的に安全な港を提供することを約束することを提案します。
これらのコミットメントは、ジェネレーティブAIのリスクに取り組むための、より包括的で意図しないコミュニティ努力への必要なステップである、と私たちは信じています。
論文 参考訳(メタデータ) (2024-03-07T20:55:08Z) - Evolving AI Risk Management: A Maturity Model based on the NIST AI Risk
Management Framework [0.0]
研究者、政府機関、組織は、責任あるAIコミュニティへのシフトを要求している。
我々は,社会工学的被害軽減のベストプラクティスに関する新たなコンセンサスに対して,組織がどこに座るかを評価するための枠組みを提供する。
論文 参考訳(メタデータ) (2024-01-26T22:28:25Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
責任AI(Responsible AI)は、企業文化の発展におけるバイアスに対処する重要な性質を強調している。
この論文は、バイアスを理解すること、バイアスを緩和すること、バイアスを説明することの3つの基本的な柱に基づいて構成されている。
オープンソースの原則に従って、アクセス可能なPythonパッケージとして、Bias On DemandとFairViewをリリースしました。
論文 参考訳(メタデータ) (2024-01-13T14:07:09Z) - Quantitative AI Risk Assessments: Opportunities and Challenges [7.35411010153049]
リスクを減らす最善の方法は、包括的なAIライフサイクルガバナンスを実装することです。
リスクは技術コミュニティのメトリクスを使って定量化できます。
本稿では,このようなアプローチの機会,課題,潜在的影響に焦点をあてて,これらの課題について考察する。
論文 参考訳(メタデータ) (2022-09-13T21:47:25Z) - Institutionalising Ethics in AI through Broader Impact Requirements [8.793651996676095]
私たちは、世界最大級のAIカンファレンスの1つによる、新しいガバナンスイニシアチブを反映しています。
NeurIPSは、著者に対して、彼らの研究のより広範な社会的影響に関する声明を提出する要求を導入した。
このようなイニシアティブのリスクや課題,潜在的なメリットについて検討する。
論文 参考訳(メタデータ) (2021-05-30T12:36:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。