論文の概要: TRIED: Truly Innovative and Effective AI Detection Benchmark, developed by WITNESS
- arxiv url: http://arxiv.org/abs/2504.21489v2
- Date: Thu, 01 May 2025 13:38:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:55.069519
- Title: TRIED: Truly Innovative and Effective AI Detection Benchmark, developed by WITNESS
- Title(参考訳): TRIED: WITNESSが開発した真に革新的で効果的なAI検出ベンチマーク
- Authors: Shirin Anlen, Zuzanna Wojciak,
- Abstract要約: WITNESSはTruly Innovative and Effective AI Detection (TRIED)ベンチマークを導入した。
レポートでは、検出ツールが真に革新的で関連性を持つようになるためには、どのように進化する必要があるかを概説している。
開発者、ポリシーアクター、標準組織に対して、説明責任、透明性、ユーザ中心の検知ソリューションを設計するための実践的なガイダンスを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The proliferation of generative AI and deceptive synthetic media threatens the global information ecosystem, especially across the Global Majority. This report from WITNESS highlights the limitations of current AI detection tools, which often underperform in real-world scenarios due to challenges related to explainability, fairness, accessibility, and contextual relevance. In response, WITNESS introduces the Truly Innovative and Effective AI Detection (TRIED) Benchmark, a new framework for evaluating detection tools based on their real-world impact and capacity for innovation. Drawing on frontline experiences, deceptive AI cases, and global consultations, the report outlines how detection tools must evolve to become truly innovative and relevant by meeting diverse linguistic, cultural, and technological contexts. It offers practical guidance for developers, policy actors, and standards bodies to design accountable, transparent, and user-centered detection solutions, and incorporate sociotechnical considerations into future AI standards, procedures and evaluation frameworks. By adopting the TRIED Benchmark, stakeholders can drive innovation, safeguard public trust, strengthen AI literacy, and contribute to a more resilient global information credibility.
- Abstract(参考訳): 生成AIと偽造合成メディアの拡散は、グローバル情報エコシステム、特にグローバルマジョリティを脅かす。
WITNESSのこのレポートは、現在のAI検出ツールの限界を強調している。
これに対し、WITNESSはTruly Innovative and Effective AI Detection (TRIED)ベンチマークを導入した。
このレポートは、フロントラインの経験、欺くAIのケース、そしてグローバルなコンサルテーションに基づいて、さまざまな言語、文化、および技術的なコンテキストを満たすことによって、検出ツールが真に革新的で関連性を持つようになるまでにどのように進化するかを概説している。
開発者、ポリシーアクター、標準団体に対して、説明責任、透明性、ユーザ中心の検知ソリューションを設計し、将来のAI標準、手順、評価フレームワークに社会技術的考察を組み込むための実践的なガイダンスを提供する。
TRIED Benchmarkを採用することで、ステークホルダはイノベーションを推進し、公的な信頼を守り、AIリテラシーを強化し、よりレジリエントなグローバル情報信頼性に貢献します。
関連論文リスト
- Information Retrieval in the Age of Generative AI: The RGB Model [77.96475639967431]
本稿では,生成型AIツールの利用の増加に伴って生じる複雑な情報ダイナミクスについて,新たな定量的アプローチを提案する。
本稿では,新たなトピックに応答して情報の生成,索引付け,普及を特徴付けるモデルを提案する。
以上の結果から,AI導入の急激なペースとユーザ依存度の増加は,不正確な情報拡散のリスクを増大させる可能性が示唆された。
論文 参考訳(メタデータ) (2025-04-29T10:21:40Z) - AIJIM: A Scalable Model for Real-Time AI in Environmental Journalism [0.0]
AIJIMは、リアルタイムAIを環境ジャーナリズムに統合するためのフレームワークである。
2024年にマルロルカ島で試験飛行を行った。
検出精度85.4%、専門家のアノテーションとの89.7%の合意に達した。
論文 参考訳(メタデータ) (2025-03-19T19:00:24Z) - Toward Agentic AI: Generative Information Retrieval Inspired Intelligent Communications and Networking [87.82985288731489]
Agentic AIは、インテリジェントなコミュニケーションとネットワークのための重要なパラダイムとして登場した。
本稿では,通信システムにおけるエージェントAIにおける知識獲得,処理,検索の役割を強調する。
論文 参考訳(メタデータ) (2025-02-24T06:02:25Z) - On the Trustworthiness of Generative Foundation Models: Guideline, Assessment, and Perspective [333.9220561243189]
Generative Foundation Models (GenFMs) がトランスフォーメーションツールとして登場した。
彼らの広く採用されていることは、次元の信頼に関する重要な懸念を提起する。
本稿では,3つの主要なコントリビューションを通じて,これらの課題に対処するための包括的枠組みを提案する。
論文 参考訳(メタデータ) (2025-02-20T06:20:36Z) - AILuminate: Introducing v1.0 of the AI Risk and Reliability Benchmark from MLCommons [62.374792825813394]
本稿ではAI製品リスクと信頼性を評価するための業界標準ベンチマークとして,AIluminate v1.0を紹介する。
このベンチマークは、危険、違法、または望ましくない行動を12の危険カテゴリーで引き起こすように設計されたプロンプトに対するAIシステムの抵抗を評価する。
論文 参考訳(メタデータ) (2025-02-19T05:58:52Z) - Towards Trustworthy Retrieval Augmented Generation for Large Language Models: A Survey [92.36487127683053]
Retrieval-Augmented Generation (RAG)は、AIGC(AIGC)の課題に対処するために設計された高度な技術である。
RAGは信頼性と最新の外部知識を提供し、幻覚を減らし、幅広いタスクで関連するコンテキストを保証する。
RAGの成功と可能性にもかかわらず、最近の研究により、RAGパラダイムはプライバシーの懸念、敵対的攻撃、説明責任の問題など、新たなリスクももたらしていることが示されている。
論文 参考訳(メタデータ) (2025-02-08T06:50:47Z) - Bridging the Communication Gap: Evaluating AI Labeling Practices for Trustworthy AI Development [41.64451715899638]
EUエネルギラベルのようなフレームワークにインスパイアされたハイレベルなAIラベルは、AIモデルの特性をより透明にするために提案されている。
本研究は,4つの重要な研究課題に沿った質的なインタビューを通じて,AIラベリングを評価する。
論文 参考訳(メタデータ) (2025-01-21T06:00:14Z) - A Unified Framework for Evaluating the Effectiveness and Enhancing the Transparency of Explainable AI Methods in Real-World Applications [2.0681376988193843]
AIモデルの特徴である"ブラックボックス"は、解釈可能性、透明性、信頼性を制約する。
本研究では,AIモデルによる説明の正確性,解釈可能性,堅牢性,公正性,完全性を評価するための統合XAI評価フレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-05T05:30:10Z) - Responsible AI in Open Ecosystems: Reconciling Innovation with Risk Assessment and Disclosure [4.578401882034969]
私たちは、モデルパフォーマンス評価がモデル制限やバイアス、その他のリスクの予測を通知したり、妨げたりする方法について焦点を当てています。
我々の発見は、倫理的取り込みを動機づけつつ、オープンソースのイノベーションを維持するための介入やポリシーを設計するAI提供者や法学者に通知することができる。
論文 参考訳(メタデータ) (2024-09-27T19:09:40Z) - Deepfakes, Misinformation, and Disinformation in the Era of Frontier AI, Generative AI, and Large AI Models [7.835719708227145]
ディープフェイクとm/disinformationの拡散は、世界中の情報エコシステムの整合性に対する恐ろしい脅威として現れている。
我々は,大規模モデル(LM-based GenAI)をベースとした生成AIの仕組みを強調した。
我々は、高度な検出アルゴリズム、クロスプラットフォームのコラボレーション、ポリシー駆動のイニシアチブを組み合わせた統合フレームワークを導入する。
論文 参考訳(メタデータ) (2023-11-29T06:47:58Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。