Physics-Informed Echo State Networks for Modeling Controllable Dynamical Systems
- URL: http://arxiv.org/abs/2409.19140v1
- Date: Fri, 27 Sep 2024 21:06:24 GMT
- Title: Physics-Informed Echo State Networks for Modeling Controllable Dynamical Systems
- Authors: Eric Mochiutti Eric Aislan Antonelo Eduardo Camponogara,
- Abstract summary: Physics-Informed ESNs (PI-ESNs) were proposed initially to model chaotic dynamic systems without external inputs.
PI-ESNs can regularize an ESN model with external inputs previously trained on just a few datapoints, reducing its overfitting and improving its generalization error.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Echo State Networks (ESNs) are recurrent neural networks usually employed for modeling nonlinear dynamic systems with relatively ease of training. By incorporating physical laws into the training of ESNs, Physics-Informed ESNs (PI-ESNs) were proposed initially to model chaotic dynamic systems without external inputs. They require less data for training since Ordinary Differential Equations (ODEs) of the considered system help to regularize the ESN. In this work, the PI-ESN is extended with external inputs to model controllable nonlinear dynamic systems. Additionally, an existing self-adaptive balancing loss method is employed to balance the contributions of the residual regression term and the physics-informed loss term in the total loss function. The experiments with two nonlinear systems modeled by ODEs, the Van der Pol oscillator and the four-tank system, and with one differential-algebraic (DAE) system, an electric submersible pump, revealed that the proposed PI-ESN outperforms the conventional ESN, especially in scenarios with limited data availability, showing that PI-ESNs can regularize an ESN model with external inputs previously trained on just a few datapoints, reducing its overfitting and improving its generalization error (up to 92% relative reduction in the test error). Further experiments demonstrated that the proposed PI-ESN is robust to parametric uncertainties in the ODE equations and that model predictive control using PI-ESN outperforms the one using plain ESN, particularly when training data is scarce.
Related papers
- Response Estimation and System Identification of Dynamical Systems via Physics-Informed Neural Networks [0.0]
This paper explores the use of Physics-Informed Neural Networks (PINNs) for the identification and estimation of dynamical systems.
PINNs offer a unique advantage by embedding known physical laws directly into the neural network's loss function, allowing for simple embedding of complex phenomena.
The results demonstrate that PINNs deliver an efficient tool across all aforementioned tasks, even in presence of modelling errors.
arXiv Detail & Related papers (2024-10-02T08:58:30Z) - Characteristic Performance Study on Solving Oscillator ODEs via Soft-constrained Physics-informed Neural Network with Small Data [6.3295494018089435]
This paper compares physics-informed neural network (PINN), conventional neural network (NN) and traditional numerical discretization methods on solving differential equations (DEs)
We focus on the soft-constrained PINN approach and formalized its mathematical framework and computational flow for solving Ordinary DEs and Partial DEs.
We demonstrate that the DeepXDE-based implementation of PINN is not only light code and efficient in training, but also flexible across CPU/GPU platforms.
arXiv Detail & Related papers (2024-08-19T13:02:06Z) - Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
Many NN approaches learn an end-to-end model that implicitly models both the governing PDE and material models.
We argue that the governing PDEs are often well-known and should be explicitly enforced rather than learned.
We introduce a new framework termed "Neural Constitutive Laws" (NCLaw) which utilizes a network architecture that strictly guarantees standard priors.
arXiv Detail & Related papers (2023-04-27T17:42:24Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
Partial differential equations (SPDEs) are significant tools for modeling dynamics in many areas including atmospheric sciences and physics.
We propose the Neural Operator with Regularity Structure (NORS) which incorporates the feature vectors for modeling dynamics driven by SPDEs.
We conduct experiments on various of SPDEs including the dynamic Phi41 model and the 2d Navier-Stokes equation.
arXiv Detail & Related papers (2022-04-13T08:53:41Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
Recent work in scientific machine learning has developed so-called physics-informed neural network (PINN) models.
We demonstrate that, while existing PINN methodologies can learn good models for relatively trivial problems, they can easily fail to learn relevant physical phenomena even for simple PDEs.
We show that these possible failure modes are not due to the lack of expressivity in the NN architecture, but that the PINN's setup makes the loss landscape very hard to optimize.
arXiv Detail & Related papers (2021-09-02T16:06:45Z) - Incorporating NODE with Pre-trained Neural Differential Operator for
Learning Dynamics [73.77459272878025]
We propose to enhance the supervised signal in learning dynamics by pre-training a neural differential operator (NDO)
NDO is pre-trained on a class of symbolic functions, and it learns the mapping between the trajectory samples of these functions to their derivatives.
We provide theoretical guarantee on that the output of NDO can well approximate the ground truth derivatives by proper tuning the complexity of the library.
arXiv Detail & Related papers (2021-06-08T08:04:47Z) - Physics-Informed Neural Nets-based Control [5.252190504926357]
This work presents a new framework called Physics-Informed Neural Nets-based Control (PINC)
PINC is amenable to control problems and able to simulate for longer-range time horizons that are not fixed beforehand.
We showcase our method in the control of two nonlinear dynamic systems.
arXiv Detail & Related papers (2021-04-06T14:55:23Z) - Neural ODE Processes [64.10282200111983]
We introduce Neural ODE Processes (NDPs), a new class of processes determined by a distribution over Neural ODEs.
We show that our model can successfully capture the dynamics of low-dimensional systems from just a few data-points.
arXiv Detail & Related papers (2021-03-23T09:32:06Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
We study estimation in a class of generalized Structural equation models (SEMs)
We formulate the linear operator equation as a min-max game, where both players are parameterized by neural networks (NNs), and learn the parameters of these neural networks using a gradient descent.
For the first time we provide a tractable estimation procedure for SEMs based on NNs with provable convergence and without the need for sample splitting.
arXiv Detail & Related papers (2020-07-02T17:55:47Z) - Neural Dynamical Systems: Balancing Structure and Flexibility in
Physical Prediction [14.788494279754481]
We introduce Neural Dynamical Systems (NDS), a method of learning dynamical models in various gray-box settings.
NDS uses neural networks to estimate free parameters of the system, predicts residual terms, and numerically integrates over time to predict future states.
arXiv Detail & Related papers (2020-06-23T00:50:48Z) - Physics-Informed Neural Networks for Non-linear System Identification
for Power System Dynamics [0.0]
This paper investigates the performance of Physics-Informed Neural Networks (PINN) for discovering the frequency dynamics of future power systems.
PINNs have the potential to address challenges such as the stronger non-linearities of low-inertia systems, increased measurement noise, and limited availability of data.
arXiv Detail & Related papers (2020-04-08T14:50:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.