論文の概要: A comprehensive review and new taxonomy on superpixel segmentation
- arxiv url: http://arxiv.org/abs/2409.19179v1
- Date: Fri, 27 Sep 2024 23:28:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 04:11:01.522696
- Title: A comprehensive review and new taxonomy on superpixel segmentation
- Title(参考訳): 超画素セグメンテーションに関する包括的レビューと新しい分類法
- Authors: I. B. Barcelos, F. de C. Belém, L. de M. João, Z. K. G. do Patrocínio Jr., A. X. Falcão, S. J. F. Guimarães,
- Abstract要約: スーパーピクセルセグメンテーションの新しい分類法について概説する。
我々は、接続性、コンパクト性、デライン化、スーパーピクセル数、色、均一性、実行時間、安定性、視覚品質の9つの基準に基づいて、20の戦略を評価する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Superpixel segmentation consists of partitioning images into regions composed of similar and connected pixels. Its methods have been widely used in many computer vision applications since it allows for reducing the workload, removing redundant information, and preserving regions with meaningful features. Due to the rapid progress in this area, the literature fails to catch up on more recent works among the compared ones and to categorize the methods according to all existing strategies. This work fills this gap by presenting a comprehensive review with new taxonomy for superpixel segmentation, in which methods are classified according to their processing steps and processing levels of image features. We revisit the recent and popular literature according to our taxonomy and evaluate 20 strategies based on nine criteria: connectivity, compactness, delineation, control over the number of superpixels, color homogeneity, robustness, running time, stability, and visual quality. Our experiments show the trends of each approach in pixel clustering and discuss individual trade-offs. Finally, we provide a new benchmark for superpixel assessment, available at https://github.com/IMScience-PPGINF-PucMinas/superpixel-benchmark.
- Abstract(参考訳): スーパーピクセルセグメンテーション(Superpixel segmentation)は、画像を、類似した接続されたピクセルからなる領域に分割する。
その方法は、作業量を削減し、冗長な情報を取り除き、意味のある特徴を持つ領域を保存することができるため、多くのコンピュータビジョンアプリケーションで広く使われている。
この分野の急速な進展により、文献は比較対象のより最近の研究に追いつかず、既存のすべての戦略に従って手法を分類する。
本研究は,画像特徴の処理ステップと処理レベルに応じて手法を分類するスーパーピクセルセグメンテーションの新しい分類法を包括的に検討することによって,このギャップを埋めるものである。
我々は,最近の文献を分類に従って再検討し,接続性,コンパクト性,デライン化,スーパーピクセル数,色均一性,堅牢性,実行時間,安定性,視覚的品質の9つの基準に基づき,20の戦略を評価する。
本実験は画素クラスタリングにおける各アプローチの傾向を示し,個々のトレードオフについて議論する。
最後に、スーパーピクセル評価のための新しいベンチマークをhttps://github.com/IMScience-PPGINF-PucMinas/superpixel-benchmarkで公開しています。
関連論文リスト
- SaccadeDet: A Novel Dual-Stage Architecture for Rapid and Accurate Detection in Gigapixel Images [50.742420049839474]
SaccadeDetは、人間の目の動きにインスパイアされた、ギガピクセルレベルの物体検出のための革新的なアーキテクチャである。
PANDAデータセットを用いて評価した本手法は,最先端手法の8倍の高速化を実現する。
また、全スライドイメージングへの応用を通じて、ギガピクセルレベルの病理解析に有意な可能性を示す。
論文 参考訳(メタデータ) (2024-07-25T11:22:54Z) - Pixel-Level Clustering Network for Unsupervised Image Segmentation [3.69853388955692]
画像の領域分割のためのピクセルレベルのクラスタリングフレームワークを,地上の真理アノテーションを使わずに提案する。
また、各スーパーピクセル間の一貫性、隣接するスーパーピクセル間の相似性/相似性、画像間の構造的類似性を利用したトレーニング戦略を提案する。
論文 参考訳(メタデータ) (2023-10-24T23:06:29Z) - Superpixel Transformers for Efficient Semantic Segmentation [32.537400525407186]
本稿では,画像の過剰部分化というスーパーピクセルの考え方を活用し,近代的なトランスフォーマーフレームワークでそれらを適用することによって,その解決策を提案する。
提案手法は,グローバルな自己認識機構によって生成されるリッチなスーパーピクセル特徴により,セマンティックセマンティックセグメンテーションにおける最先端性能を実現する。
論文 参考訳(メタデータ) (2023-09-28T23:09:30Z) - Superpixels algorithms through network community detection [0.0]
コミュニティ検出は複雑なネットワーク分析の強力なツールであり、様々な研究分野の応用を見出すことができる。
スーパーピクセルは、可能な限りオリジナル情報を保存しながら、画像をより小さなレベルで表現することを目的としている。
4つの連結画素グラフ上で,最先端のコミュニティ検出アルゴリズムによって計算されたスーパーピクセルの効率について検討した。
論文 参考訳(メタデータ) (2023-08-27T13:13:28Z) - Image Reconstruction using Superpixel Clustering and Tensor Completion [21.088385725444944]
本手法では,重要なテクスチャやセマンティクスを捉えた複数の領域に分割し,各領域から代表画素を選択して保存する。
本稿では,2つのスムーズなテンソル補完アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-05-16T16:00:48Z) - Probabilistic Deep Metric Learning for Hyperspectral Image
Classification [91.5747859691553]
本稿では,ハイパースペクトル画像分類のための確率論的深度学習フレームワークを提案する。
ハイパースペクトルセンサーが捉えた画像に対して、各ピクセルのカテゴリを予測することを目的としている。
我々のフレームワークは、既存のハイパースペクトル画像分類法に容易に適用できる。
論文 参考訳(メタデータ) (2022-11-15T17:57:12Z) - Efficient Multiscale Object-based Superpixel Framework [62.48475585798724]
我々は,SICLE(Iterative CLEarcutting)によるスーパーピクセルという,新しいスーパーピクセルフレームワークを提案する。
SICLEは、複数スケールのセグメンテーションをオンザフライで生成できるオブジェクト情報を利用する。
これは最近のスーパーピクセル法を一般化し、複数のデライン化指標に従って効率と効率性に関する最先端のアプローチを超越している。
論文 参考訳(メタデータ) (2022-04-07T15:59:38Z) - Saliency Enhancement using Superpixel Similarity [77.34726150561087]
Saliency Object Detection (SOD) は画像解析にいくつかの応用がある。
深層学習に基づくSOD法は最も効果的であるが、類似した色を持つ前景の部品を見逃すことがある。
スーパーピクセル類似性(SESS)に対するtextitSaliency Enhancement というポストプロセッシング手法を導入する。
我々は,SESSが5つの画像データセット上での3つのディープラーニングに基づくSOD手法の結果を連続的に,かつ著しく改善できることを実証した。
論文 参考訳(メタデータ) (2021-12-01T17:22:54Z) - Mixed Supervision Learning for Whole Slide Image Classification [88.31842052998319]
超高解像度画像のための混合監視学習フレームワークを提案する。
パッチトレーニングの段階では、このフレームワークは、粗いイメージレベルのラベルを使用して、自己教師付き学習を洗練することができる。
画素レベルの偽陽性と偽陰性を抑制するための包括的な戦略が提案されている。
論文 参考訳(メタデータ) (2021-07-02T09:46:06Z) - Superpixel Segmentation Based on Spatially Constrained Subspace
Clustering [57.76302397774641]
独立意味情報を持つ各代表領域を部分空間とみなし,部分空間クラスタリング問題としてスーパーピクセルセグメンテーションを定式化する。
従来のサブスペースクラスタリングとスーパーピクセルセグメンテーションの簡単な統合は,画素の空間相関のために効果的に機能しないことを示す。
本稿では,空間隣接画素に類似の属性を付加してスーパーピクセルにクラスタリング可能な,凸局所性制約付きサブスペースクラスタリングモデルを提案する。
論文 参考訳(メタデータ) (2020-12-11T06:18:36Z) - Multi-Scale Superpatch Matching using Dual Superpixel Descriptors [0.6875312133832078]
スーパーピクセルへの過剰セグメンテーションは、高速な高密度画像処理を可能にする、非常に効果的な次元削減戦略である。
標準的な階層的多重解像度スキームと比較して、画像分解の固有の不規則性は問題である。
本稿では,新しいスーパーピクセル近傍ディスクリプタであるデュアルスーパーパッチを紹介する。
論文 参考訳(メタデータ) (2020-03-09T22:04:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。