Group Distributionally Robust Optimization can Suppress Class Imbalance Effect in Network Traffic Classification
- URL: http://arxiv.org/abs/2409.19214v1
- Date: Sat, 28 Sep 2024 02:45:14 GMT
- Title: Group Distributionally Robust Optimization can Suppress Class Imbalance Effect in Network Traffic Classification
- Authors: Wumei Du, Qi Wang, Yiqin Lv, Dong Liang, Guanlin Wu, Xingxing Liang, Zheng Xie,
- Abstract summary: This paper focuses on network traffic classification in the presence of class imbalance.
We propose strategies for alleviating the class imbalance through the lens of group distributionally robust optimization.
Results show that our approach can not only suppress the negative effect of class imbalance but also improve the comprehensive performance in prediction.
- Score: 8.388789651259671
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Internet services have led to the eruption of traffic, and machine learning on these Internet data has become an indispensable tool, especially when the application is risk-sensitive. This paper focuses on network traffic classification in the presence of class imbalance, which fundamentally and ubiquitously exists in Internet data analysis. This existence of class imbalance mostly drifts the optimal decision boundary, resulting in a less optimal solution for machine learning models. To alleviate the effect, we propose to design strategies for alleviating the class imbalance through the lens of group distributionally robust optimization. Our approach iteratively updates the non-parametric weights for separate classes and optimizes the learning model by minimizing reweighted losses. We interpret the optimization steps from a Stackelberg game and perform extensive experiments on typical benchmarks. Results show that our approach can not only suppress the negative effect of class imbalance but also improve the comprehensive performance in prediction.
Related papers
- Learning Fair Ranking Policies via Differentiable Optimization of
Ordered Weighted Averages [55.04219793298687]
This paper shows how efficiently-solvable fair ranking models can be integrated into the training loop of Learning to Rank.
In particular, this paper is the first to show how to backpropagate through constrained optimizations of OWA objectives, enabling their use in integrated prediction and decision models.
arXiv Detail & Related papers (2024-02-07T20:53:53Z) - Deep autoregressive density nets vs neural ensembles for model-based
offline reinforcement learning [2.9158689853305693]
We consider a model-based reinforcement learning algorithm that infers the system dynamics from the available data and performs policy optimization on imaginary model rollouts.
This approach is vulnerable to exploiting model errors which can lead to catastrophic failures on the real system.
We show that better performance can be obtained with a single well-calibrated autoregressive model on the D4RL benchmark.
arXiv Detail & Related papers (2024-02-05T10:18:15Z) - Class-Imbalanced Semi-Supervised Learning for Large-Scale Point Cloud
Semantic Segmentation via Decoupling Optimization [64.36097398869774]
Semi-supervised learning (SSL) has been an active research topic for large-scale 3D scene understanding.
The existing SSL-based methods suffer from severe training bias due to class imbalance and long-tail distributions of the point cloud data.
We introduce a new decoupling optimization framework, which disentangles feature representation learning and classifier in an alternative optimization manner to shift the bias decision boundary effectively.
arXiv Detail & Related papers (2024-01-13T04:16:40Z) - Small Dataset, Big Gains: Enhancing Reinforcement Learning by Offline
Pre-Training with Model Based Augmentation [59.899714450049494]
offline pre-training can produce sub-optimal policies and lead to degraded online reinforcement learning performance.
We propose a model-based data augmentation strategy to maximize the benefits of offline reinforcement learning pre-training and reduce the scale of data needed to be effective.
arXiv Detail & Related papers (2023-12-15T14:49:41Z) - Simplifying Neural Network Training Under Class Imbalance [77.39968702907817]
Real-world datasets are often highly class-imbalanced, which can adversely impact the performance of deep learning models.
The majority of research on training neural networks under class imbalance has focused on specialized loss functions, sampling techniques, or two-stage training procedures.
We demonstrate that simply tuning existing components of standard deep learning pipelines, such as the batch size, data augmentation, and label smoothing, can achieve state-of-the-art performance without any such specialized class imbalance methods.
arXiv Detail & Related papers (2023-12-05T05:52:44Z) - Online Continual Learning via Logit Adjusted Softmax [24.327176079085703]
Inter-class imbalance during training has been identified as a major cause of forgetting.
We present a simple adjustment of model logits during training can effectively resist prior class bias.
Our proposed method, Logit Adjusted Softmax, can mitigate the impact of inter-class imbalance not only in class-incremental but also in realistic general setups.
arXiv Detail & Related papers (2023-11-11T03:03:33Z) - Graph Embedded Intuitionistic Fuzzy Random Vector Functional Link Neural
Network for Class Imbalance Learning [4.069144210024564]
We propose a graph embedded intuitionistic fuzzy RVFL for class imbalance learning (GE-IFRVFL-CIL) model incorporating a weighting mechanism to handle imbalanced datasets.
The proposed GE-IFRVFL-CIL model offers a promising solution to address the class imbalance issue, mitigates the detrimental effect of noise and outliers, and preserves the inherent geometrical structures of the dataset.
arXiv Detail & Related papers (2023-07-15T20:45:45Z) - On the Trade-off of Intra-/Inter-class Diversity for Supervised
Pre-training [72.8087629914444]
We study the impact of the trade-off between the intra-class diversity (the number of samples per class) and the inter-class diversity (the number of classes) of a supervised pre-training dataset.
With the size of the pre-training dataset fixed, the best downstream performance comes with a balance on the intra-/inter-class diversity.
arXiv Detail & Related papers (2023-05-20T16:23:50Z) - Leveraging Angular Information Between Feature and Classifier for
Long-tailed Learning: A Prediction Reformulation Approach [90.77858044524544]
We reformulate the recognition probabilities through included angles without re-balancing the classifier weights.
Inspired by the performance improvement of the predictive form reformulation, we explore the different properties of this angular prediction.
Our method is able to obtain the best performance among peer methods without pretraining on CIFAR10/100-LT and ImageNet-LT.
arXiv Detail & Related papers (2022-12-03T07:52:48Z) - A Theoretical Analysis of the Learning Dynamics under Class Imbalance [0.10231119246773925]
We show that the learning curves for minority and majority classes follow sub-optimal trajectories when training with a gradient-based trajectory.
This slowdown is related to the imbalance ratio and can be traced back to a competition between the optimization of different classes.
We find that GD is not guaranteed to decrease the loss for each class but that this problem can be addressed by performing a per-class normalization of the gradient.
arXiv Detail & Related papers (2022-07-01T12:54:38Z) - AutoBalance: Optimized Loss Functions for Imbalanced Data [38.64606886588534]
We propose AutoBalance, a bi-level optimization framework that automatically designs a training loss function to optimize a blend of accuracy and fairness-seeking objectives.
Specifically, a lower-level problem trains the model weights, and an upper-level problem tunes the loss function by monitoring and optimizing the desired objective over the validation data.
Our loss design enables personalized treatment for classes/groups by employing a parametric cross-entropy loss and individualized data augmentation schemes.
arXiv Detail & Related papers (2022-01-04T15:53:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.