Summit Vitals: Multi-Camera and Multi-Signal Biosensing at High Altitudes
- URL: http://arxiv.org/abs/2409.19223v1
- Date: Sat, 28 Sep 2024 03:36:16 GMT
- Title: Summit Vitals: Multi-Camera and Multi-Signal Biosensing at High Altitudes
- Authors: Ke Liu, Jiankai Tang, Zhang Jiang, Yuntao Wang, Xiaojing Liu, Dong Li, Yuanchun Shi,
- Abstract summary: Video photoplethysmography is an emerging method for non-invasive and convenient measurement of physiological signals.
This dataset is designed to validate video vitals estimation algorithms and fusing videos from different positions.
Our findings suggest that simultaneous training on multiple indicators, such as PPG and blood oxygen, can reduce MAE in SpO2 estimation by 17.8%.
- Score: 22.23531900474421
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Video photoplethysmography (vPPG) is an emerging method for non-invasive and convenient measurement of physiological signals, utilizing two primary approaches: remote video PPG (rPPG) and contact video PPG (cPPG). Monitoring vitals in high-altitude environments, where heart rates tend to increase and blood oxygen levels often decrease, presents significant challenges. To address these issues, we introduce the SUMS dataset comprising 80 synchronized non-contact facial and contact finger videos from 10 subjects during exercise and oxygen recovery scenarios, capturing PPG, respiration rate (RR), and SpO2. This dataset is designed to validate video vitals estimation algorithms and compare facial rPPG with finger cPPG. Additionally, fusing videos from different positions (i.e., face and finger) reduces the mean absolute error (MAE) of SpO2 predictions by 7.6\% and 10.6\% compared to only face and only finger, respectively. In cross-subject evaluation, we achieve an MAE of less than 0.5 BPM for HR estimation and 2.5\% for SpO2 estimation, demonstrating the precision of our multi-camera fusion techniques. Our findings suggest that simultaneous training on multiple indicators, such as PPG and blood oxygen, can reduce MAE in SpO2 estimation by 17.8\%.
Related papers
- Analyzing Participants' Engagement during Online Meetings Using Unsupervised Remote Photoplethysmography with Behavioral Features [50.82725748981231]
Engagement measurement finds application in healthcare, education, services.
Use of physiological and behavioral features is viable, but impracticality of traditional physiological measurement arises due to the need for contact sensors.
We demonstrate the feasibility of the unsupervised photoplethysmography (rmography) as an alternative for contact sensors.
arXiv Detail & Related papers (2024-04-05T20:39:16Z) - How Suboptimal is Training rPPG Models with Videos and Targets from Different Body Sites? [40.527994999118725]
Most current models are trained on facial videos using contact PPG measurements from the fingertip as targets/ labels.
We show that neural models learn to predict the morphology of the ground truth PPG signal better when trained on the forehead.
arXiv Detail & Related papers (2024-03-15T15:20:21Z) - Phase-shifted remote photoplethysmography for estimating heart rate and blood pressure from facial video [4.392877207448768]
Heart rate and blood pressure are important biometric information for the monitoring of cardiovascular system.
In this thesis, we propose a vision-based method for estimating the heart rate and blood pressure.
This thesis proposes a 2-stage deep learning framework consisting of a dual remote photoplethysmography network (BP-Net) and bounded blood pressure network (BBP-Net)
arXiv Detail & Related papers (2024-01-09T13:56:37Z) - Video-based sympathetic arousal assessment via peripheral blood flow
estimation [46.695433930419945]
We present a novel approach to infer sympathetic arousal by measuring the peripheral blood flow on the face or hand optically.
We show that sympathetic arousal is best inferred from the forehead, finger, or palm.
arXiv Detail & Related papers (2023-11-12T19:06:33Z) - Learning Structure-Guided Diffusion Model for 2D Human Pose Estimation [71.24808323646167]
We propose textbfDiffusionPose, a new scheme for learning keypoints heatmaps by a neural network.
During training, the keypoints are diffused to random distribution by adding noises and the diffusion model learns to recover ground-truth heatmaps from noised heatmaps.
Experiments show the prowess of our scheme with improvements of 1.6, 1.2, and 1.2 mAP on widely-used COCO, CrowdPose, and AI Challenge datasets.
arXiv Detail & Related papers (2023-06-29T16:24:32Z) - Full-Body Cardiovascular Sensing with Remote Photoplethysmography [4.123458880886283]
Remote photoplethysmography (r) allows for noncontact monitoring of blood volume changes from a camera by detecting minor fluctuations in reflected light.
We explored the feasibility of r from non-face body regions such as the arms, legs, and hands.
arXiv Detail & Related papers (2023-03-16T20:37:07Z) - Benchmarking Joint Face Spoofing and Forgery Detection with Visual and
Physiological Cues [81.15465149555864]
We establish the first joint face spoofing and detection benchmark using both visual appearance and physiological r cues.
To enhance the r periodicity discrimination, we design a two-branch physiological network using both facial powerful rtemporal signal map and its continuous wavelet transformed counterpart as inputs.
arXiv Detail & Related papers (2022-08-10T15:41:48Z) - Identifying Rhythmic Patterns for Face Forgery Detection and
Categorization [46.21354355137544]
We propose a framework for face forgery detection and categorization consisting of: 1) a Spatial-Temporal Filtering Network (STFNet) for PPG signals, and 2) a Spatial-Temporal Interaction Network (STINet) for constraint and interaction of PPG signals.
With insight into the generation of forgery methods, we further propose intra-source and inter-source blending to boost the performance of the framework.
arXiv Detail & Related papers (2022-07-04T04:57:06Z) - ReViSe: Remote Vital Signs Measurement Using Smartphone Camera [0.0]
Remote Photoplethysmography (rVi) is a fast, effective, inexpensive and convenient method for collecting biometric data.
We propose an end-to-end framework to measure people's vital signs based on the ruration of a user's face captured with a smartphone camera.
We extract face landmarks with a deep learning-based neural network model in real-time.
arXiv Detail & Related papers (2022-06-13T19:20:11Z) - Motion Artifact Reduction In Photoplethysmography For Reliable Signal
Selection [5.264561559435017]
Photoplethysmography ( PPG) is a non-invasive and economical technique to extract vital signs of the human body.
It is sensitive to motion which can corrupt the signal's quality.
It is valuable to collect realistic PPG signals while performing Activities of Daily Living (ADL) to develop practical signal denoising and analysis methods.
arXiv Detail & Related papers (2021-09-06T21:53:56Z) - Video-based Remote Physiological Measurement via Cross-verified Feature
Disentangling [121.50704279659253]
We propose a cross-verified feature disentangling strategy to disentangle the physiological features with non-physiological representations.
We then use the distilled physiological features for robust multi-task physiological measurements.
The disentangled features are finally used for the joint prediction of multiple physiological signals like average HR values and r signals.
arXiv Detail & Related papers (2020-07-16T09:39:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.