Provable Privacy Advantages of Decentralized Federated Learning via Distributed Optimization
- URL: http://arxiv.org/abs/2407.09324v1
- Date: Fri, 12 Jul 2024 15:01:09 GMT
- Title: Provable Privacy Advantages of Decentralized Federated Learning via Distributed Optimization
- Authors: Wenrui Yu, Qiongxiu Li, Milan Lopuhaä-Zwakenberg, Mads Græsbøll Christensen, Richard Heusdens,
- Abstract summary: Federated learning (FL) emerged as a paradigm designed to improve data privacy by enabling data to reside at its source.
Recent findings suggest that decentralized FL does not empirically offer any additional privacy or security benefits over centralized models.
We demonstrate that decentralized FL, when deploying distributed optimization, provides enhanced privacy protection.
- Score: 16.418338197742287
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) emerged as a paradigm designed to improve data privacy by enabling data to reside at its source, thus embedding privacy as a core consideration in FL architectures, whether centralized or decentralized. Contrasting with recent findings by Pasquini et al., which suggest that decentralized FL does not empirically offer any additional privacy or security benefits over centralized models, our study provides compelling evidence to the contrary. We demonstrate that decentralized FL, when deploying distributed optimization, provides enhanced privacy protection - both theoretically and empirically - compared to centralized approaches. The challenge of quantifying privacy loss through iterative processes has traditionally constrained the theoretical exploration of FL protocols. We overcome this by conducting a pioneering in-depth information-theoretical privacy analysis for both frameworks. Our analysis, considering both eavesdropping and passive adversary models, successfully establishes bounds on privacy leakage. We show information theoretically that the privacy loss in decentralized FL is upper bounded by the loss in centralized FL. Compared to the centralized case where local gradients of individual participants are directly revealed, a key distinction of optimization-based decentralized FL is that the relevant information includes differences of local gradients over successive iterations and the aggregated sum of different nodes' gradients over the network. This information complicates the adversary's attempt to infer private data. To bridge our theoretical insights with practical applications, we present detailed case studies involving logistic regression and deep neural networks. These examples demonstrate that while privacy leakage remains comparable in simpler models, complex models like deep neural networks exhibit lower privacy risks under decentralized FL.
Related papers
- Immersion and Invariance-based Coding for Privacy-Preserving Federated
Learning [1.5989047000011911]
Federated learning (FL) has emerged as a method to preserve privacy in collaborative distributed learning.
We introduce a privacy-preserving FL framework that combines differential privacy and system immersion tools from control theory.
We demonstrate that the proposed privacy-preserving scheme can be tailored to offer any desired level of differential privacy for both local and global model parameters.
arXiv Detail & Related papers (2024-09-25T15:04:42Z) - Re-Evaluating Privacy in Centralized and Decentralized Learning: An Information-Theoretical and Empirical Study [4.7773230870500605]
Decentralized Federated Learning (DFL) has garnered attention for its robustness and scalability.
Recent work by Pasquini et. al. challenges this view, demonstrating that DFL does not inherently improve privacy against empirical attacks.
arXiv Detail & Related papers (2024-09-21T23:05:50Z) - Bridging Data Barriers among Participants: Assessing the Potential of Geoenergy through Federated Learning [2.8498944632323755]
This study introduces a novel federated learning (FL) framework based on XGBoost models.
FL models demonstrate superior accuracy and generalization capabilities compared to separate models.
This study opens new avenues for assessing unconventional reservoirs through collaborative and privacy-preserving FL techniques.
arXiv Detail & Related papers (2024-04-29T09:12:31Z) - Privacy-preserving Federated Primal-dual Learning for Non-convex and Non-smooth Problems with Model Sparsification [51.04894019092156]
Federated learning (FL) has been recognized as a rapidly growing area, where the model is trained over clients under the FL orchestration (PS)
In this paper, we propose a novel primal sparification algorithm for and guarantee non-smooth FL problems.
Its unique insightful properties and its analyses are also presented.
arXiv Detail & Related papers (2023-10-30T14:15:47Z) - PS-FedGAN: An Efficient Federated Learning Framework Based on Partially
Shared Generative Adversarial Networks For Data Privacy [56.347786940414935]
Federated Learning (FL) has emerged as an effective learning paradigm for distributed computation.
This work proposes a novel FL framework that requires only partial GAN model sharing.
Named as PS-FedGAN, this new framework enhances the GAN releasing and training mechanism to address heterogeneous data distributions.
arXiv Detail & Related papers (2023-05-19T05:39:40Z) - Federated Learning with Privacy-Preserving Ensemble Attention
Distillation [63.39442596910485]
Federated Learning (FL) is a machine learning paradigm where many local nodes collaboratively train a central model while keeping the training data decentralized.
We propose a privacy-preserving FL framework leveraging unlabeled public data for one-way offline knowledge distillation.
Our technique uses decentralized and heterogeneous local data like existing FL approaches, but more importantly, it significantly reduces the risk of privacy leakage.
arXiv Detail & Related papers (2022-10-16T06:44:46Z) - Preserving Privacy in Federated Learning with Ensemble Cross-Domain
Knowledge Distillation [22.151404603413752]
Federated Learning (FL) is a machine learning paradigm where local nodes collaboratively train a central model.
Existing FL methods typically share model parameters or employ co-distillation to address the issue of unbalanced data distribution.
We develop a privacy preserving and communication efficient method in a FL framework with one-shot offline knowledge distillation.
arXiv Detail & Related papers (2022-09-10T05:20:31Z) - Decentralized Stochastic Optimization with Inherent Privacy Protection [103.62463469366557]
Decentralized optimization is the basic building block of modern collaborative machine learning, distributed estimation and control, and large-scale sensing.
Since involved data, privacy protection has become an increasingly pressing need in the implementation of decentralized optimization algorithms.
arXiv Detail & Related papers (2022-05-08T14:38:23Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Understanding Clipping for Federated Learning: Convergence and
Client-Level Differential Privacy [67.4471689755097]
This paper empirically demonstrates that the clipped FedAvg can perform surprisingly well even with substantial data heterogeneity.
We provide the convergence analysis of a differential private (DP) FedAvg algorithm and highlight the relationship between clipping bias and the distribution of the clients' updates.
arXiv Detail & Related papers (2021-06-25T14:47:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.