論文の概要: A Generalized Model for Multidimensional Intransitivity
- arxiv url: http://arxiv.org/abs/2409.19325v1
- Date: Sat, 28 Sep 2024 11:48:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-05 23:58:48.299875
- Title: A Generalized Model for Multidimensional Intransitivity
- Title(参考訳): 多次元透過率の一般化モデル
- Authors: Jiuding Duan, Jiyi Li, Yukino Baba, Hisashi Kashima,
- Abstract要約: 本稿では,各プレイヤーのd-次元表現(d>1)とデータセット固有の距離空間を共同で学習する確率モデルを提案する。
提案手法は,予測精度において,競合する手法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 26.127246746317958
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Intransitivity is a critical issue in pairwise preference modeling. It refers to the intransitive pairwise preferences between a group of players or objects that potentially form a cyclic preference chain and has been long discussed in social choice theory in the context of the dominance relationship. However, such multifaceted intransitivity between players and the corresponding player representations in high dimensions is difficult to capture. In this paper, we propose a probabilistic model that jointly learns each player's d-dimensional representation (d>1) and a dataset-specific metric space that systematically captures the distance metric in Rd over the embedding space. Interestingly, by imposing additional constraints in the metric space, our proposed model degenerates to former models used in intransitive representation learning. Moreover, we present an extensive quantitative investigation of the vast existence of intransitive relationships between objects in various real-world benchmark datasets. To our knowledge, this investigation is the first of this type. The predictive performance of our proposed method on different real-world datasets, including social choice, election, and online game datasets, shows that our proposed method outperforms several competing methods in terms of prediction accuracy.
- Abstract(参考訳): 非透過性はペアワイズ・リクエスト・モデリングにおいて重要な問題である。
これは、サイクリックな選好連鎖を形成し、支配関係の文脈における社会的選択論において長い間議論されてきた、プレイヤーまたはオブジェクトのグループ間の過渡的なペアワイドな選好を指す。
しかし、高次元におけるプレイヤーと対応するプレイヤーの多面的非透過性は捕捉が困難である。
本稿では,各プレイヤーのd-次元表現(d>1)を協調的に学習する確率モデルと,組込み空間上でRd内の距離距離を体系的にキャプチャするデータセット固有の距離空間を提案する。
興味深いことに、計量空間にさらなる制約を課すことで、提案モデルは非推移的表現学習で使用される以前のモデルに退化する。
さらに,様々な実世界のベンチマークデータセットにおいて,オブジェクト間の非推移的関係の広大な存在を定量的に検討する。
私たちの知る限りでは、この調査はこのタイプの最初のものである。
提案手法の社会的選択, 選挙, オンラインゲームデータセットを含む実世界の異なるデータセットに対する予測性能は, 提案手法が予測精度において競合する手法よりも優れていることを示す。
関連論文リスト
- From Semantics to Hierarchy: A Hybrid Euclidean-Tangent-Hyperbolic Space Model for Temporal Knowledge Graph Reasoning [1.1372536310854844]
時間的知識グラフ(TKG)推論は、過去のデータに基づいて将来の出来事を予測する。
既存のユークリッドモデルはセマンティクスを捉えるのに優れているが、階層構造に苦しむ。
ユークリッドモデルと双曲モデルの両方の強みを利用する新しいハイブリッド幾何空間アプローチを提案する。
論文 参考訳(メタデータ) (2024-08-30T10:33:08Z) - Measuring Orthogonality in Representations of Generative Models [81.13466637365553]
教師なしの表現学習において、モデルは高次元データから低次元の学習表現に不可欠な特徴を蒸留することを目的としている。
独立した生成過程の切り離しは、長い間、高品質な表現を生み出してきた。
我々は、IWO(Importance-Weighted Orthogonality)とIWR(Importance-Weighted Rank)の2つの新しい指標を提案する。
論文 参考訳(メタデータ) (2024-07-04T08:21:54Z) - Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
我々はLSC(Latent Semantic Consensus)と呼ばれる効果的な方法を提案する。
LSCは、モデルフィッティング問題をデータポイントとモデル仮説に基づく2つの潜在意味空間に定式化する。
LSCは、一般的な多構造モデルフィッティングのために、数ミリ秒以内で一貫した、信頼性の高いソリューションを提供することができる。
論文 参考訳(メタデータ) (2024-03-11T05:35:38Z) - Joint Distributional Learning via Cramer-Wold Distance [0.7614628596146602]
高次元データセットの共分散学習を容易にするために,クレーマー-ウォルド距離正規化を導入し,クレーマー-ウォルド距離正規化法を提案する。
また、フレキシブルな事前モデリングを可能にする2段階学習手法を導入し、集約後と事前分布のアライメントを改善する。
論文 参考訳(メタデータ) (2023-10-25T05:24:23Z) - Prototype-based Embedding Network for Scene Graph Generation [105.97836135784794]
現在のシーングラフ生成(SGG)手法は、コンテキスト情報を探索し、エンティティペア間の関係を予測する。
被写体と対象物の組み合わせが多様であるため、各述語カテゴリーには大きなクラス内変異が存在する。
プロトタイプベースのEmbedding Network (PE-Net) は、エンティティ/述語を、プロトタイプに準拠したコンパクトで独特な表現でモデル化する。
PLは、PE-Netがそのようなエンティティ述語マッチングを効率的に学習するのを助けるために導入され、不明瞭なエンティティ述語マッチングを緩和するためにプロトタイプ正規化(PR)が考案されている。
論文 参考訳(メタデータ) (2023-03-13T13:30:59Z) - RENs: Relevance Encoding Networks [0.0]
本稿では,遅延空間に先行する自動相対性決定(ARD)を用いて,データ固有のボトルネック次元を学習する新しい確率的VOEベースのフレームワークであるrelevance encoding network (RENs)を提案する。
提案モデルは,サンプルの表現や生成品質を損なうことなく,関連性のあるボトルネック次元を学習することを示す。
論文 参考訳(メタデータ) (2022-05-25T21:53:48Z) - Multimodal Data Fusion in High-Dimensional Heterogeneous Datasets via
Generative Models [16.436293069942312]
我々は、教師なしの方法で高次元異種データから確率的生成モデルを学習することに興味がある。
本稿では,指数関数的な分布系を通じて異なるデータ型を結合する一般的なフレームワークを提案する。
提案アルゴリズムは、実数値(ガウス)とカテゴリー(マルチノミカル)の特徴を持つ、よく遭遇する異種データセットについて詳細に述べる。
論文 参考訳(メタデータ) (2021-08-27T18:10:31Z) - Latent Space Model for Higher-order Networks and Generalized Tensor
Decomposition [18.07071669486882]
我々は、複雑な高次ネットワーク相互作用を研究するために、一般的な潜在空間モデルとして定式化された統一フレームワークを導入する。
一般化された多線形カーネルをリンク関数として、潜伏位置と観測データとの関係を定式化する。
本手法が合成データに与える影響を実証する。
論文 参考訳(メタデータ) (2021-06-30T13:11:17Z) - Post-mortem on a deep learning contest: a Simpson's paradox and the
complementary roles of scale metrics versus shape metrics [61.49826776409194]
我々は、ニューラルネットワーク(NN)モデルの一般化精度を予測するために、コンテストで公に利用可能にされたモデルのコーパスを分析する。
メトリクスが全体としてよく機能するが、データのサブパーティションではあまり機能しない。
本稿では,データに依存しない2つの新しい形状指標と,一連のNNのテスト精度の傾向を予測できるデータ依存指標を提案する。
論文 参考訳(メタデータ) (2021-06-01T19:19:49Z) - OR-Net: Pointwise Relational Inference for Data Completion under Partial
Observation [51.083573770706636]
この作業はリレーショナル推論を使って不完全なデータを埋めます。
本稿では,2つの点での相対性理論をモデル化するために,全関係ネットワーク (or-net) を提案する。
論文 参考訳(メタデータ) (2021-05-02T06:05:54Z) - A Multi-Semantic Metapath Model for Large Scale Heterogeneous Network
Representation Learning [52.83948119677194]
大規模不均一表現学習のためのマルチセマンティックメタパス(MSM)モデルを提案する。
具体的には,マルチセマンティックなメタパスに基づくランダムウォークを生成し,不均衡な分布を扱うヘテロジニアスな近傍を構築する。
提案するフレームワークに対して,AmazonとAlibabaの2つの挑戦的なデータセットに対して,体系的な評価を行う。
論文 参考訳(メタデータ) (2020-07-19T22:50:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。