論文の概要: Tailed Low-Rank Matrix Factorization for Similarity Matrix Completion
- arxiv url: http://arxiv.org/abs/2409.19550v1
- Date: Sun, 29 Sep 2024 04:27:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 22:03:01.364000
- Title: Tailed Low-Rank Matrix Factorization for Similarity Matrix Completion
- Title(参考訳): 類似行列補完のためのテーラー低ランク行列分解法
- Authors: Changyi Ma, Runsheng Yu, Xiao Chen, Youzhi Zhang,
- Abstract要約: similarity Completion Matrixは多くの機械学習タスクの中核にある基本的なツールとして機能する。
この問題に対処するために、類似行列理論(SMC)法が提案されているが、それらは複雑である。
提案手法は,PSD特性を解析して推定プロセスを導出し,低ランク解を保証するために非低ランク正規化器を組み込む2つの新しい,スケーラブルで効果的なアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 14.542166904874147
- License:
- Abstract: Similarity matrix serves as a fundamental tool at the core of numerous downstream machine-learning tasks. However, missing data is inevitable and often results in an inaccurate similarity matrix. To address this issue, Similarity Matrix Completion (SMC) methods have been proposed, but they suffer from high computation complexity due to the Singular Value Decomposition (SVD) operation. To reduce the computation complexity, Matrix Factorization (MF) techniques are more explicit and frequently applied to provide a low-rank solution, but the exact low-rank optimal solution can not be guaranteed since it suffers from a non-convex structure. In this paper, we introduce a novel SMC framework that offers a more reliable and efficient solution. Specifically, beyond simply utilizing the unique Positive Semi-definiteness (PSD) property to guide the completion process, our approach further complements a carefully designed rank-minimization regularizer, aiming to achieve an optimal and low-rank solution. Based on the key insights that the underlying PSD property and Low-Rank property improve the SMC performance, we present two novel, scalable, and effective algorithms, SMCNN and SMCNmF, which investigate the PSD property to guide the estimation process and incorporate nonconvex low-rank regularizer to ensure the low-rank solution. Theoretical analysis ensures better estimation performance and convergence speed. Empirical results on real-world datasets demonstrate the superiority and efficiency of our proposed methods compared to various baseline methods.
- Abstract(参考訳): 類似度行列は、多くの下流機械学習タスクの中核にある基本的なツールとして機能する。
しかし、欠落したデータは避けられず、しばしば不正確な類似性行列をもたらす。
この問題に対処するため, 類似行列補完法(SMC)が提案されているが, Singular Value Decomposition (SVD) 演算による計算の複雑さに悩まされている。
計算複雑性を低減するため、行列因子化(MF)技術はより明示的で、低ランクなソリューションを提供するために頻繁に適用されるが、非凸構造に苦しむため、正確な低ランクの最適解を保証することはできない。
本稿では,より信頼性が高く効率的なソリューションを提供する新しいSMCフレームワークを提案する。
具体的には,PSD(Positive Semi-Definiteness)特性を利用して完成過程を導出するだけでなく,最適かつ低ランクな解を実現するために,慎重に設計されたランク最小化正規化器をさらに補完する。
基礎となるPSD特性と低ランク特性がSMC性能を改善するというキーインサイトに基づいて、PSD特性を探索し、非凸低ランク正規化器を組み込んで低ランク解を確実にする2つの新しい、スケーラブルで効果的なアルゴリズムSMCNNとSMCNmFを提案する。
理論的解析により、より良い推定性能と収束速度が保証される。
実世界のデータセットにおける実験結果から,提案手法が様々なベースライン手法よりも優れていることを示す。
関連論文リスト
- Spectral Entry-wise Matrix Estimation for Low-Rank Reinforcement
Learning [53.445068584013896]
低ランク構造を持つ強化学習(RL)における行列推定問題について検討した。
低ランク帯では、回収される行列は期待される腕の報酬を指定し、低ランクマルコフ決定プロセス(MDP)では、例えばMDPの遷移カーネルを特徴付ける。
簡単なスペクトルベースの行列推定手法は,行列の特異部分空間を効率よく復元し,ほぼ最小の入力誤差を示すことを示す。
論文 参考訳(メタデータ) (2023-10-10T17:06:41Z) - Statistically Optimal K-means Clustering via Nonnegative Low-rank Semidefinite Programming [25.210724274471914]
K$-meansクラスタリングは、大規模なデータセットのパターンを識別する機械学習手法として広く使用されている。
本稿では,非負の低ランクな$K$-means分解問題を解くNMFライクなアルゴリズムについて考察する。
提案アルゴリズムは,スケーラビリティを維持しつつ,既存の最先端技術と比較して,誤クラスタリングエラーを著しく小さくする。
論文 参考訳(メタデータ) (2023-05-29T00:39:55Z) - An inexact LPA for DC composite optimization and application to matrix completions with outliers [5.746154410100363]
本稿では,複合最適化問題のクラスについて述べる。
合成構造を利用することで、ポテンシャル関数が反復列において1/2$のKL特性を持つ条件を与える。
論文 参考訳(メタデータ) (2023-03-29T16:15:34Z) - Asymmetric Scalable Cross-modal Hashing [51.309905690367835]
クロスモーダルハッシュは、大規模なマルチメディア検索問題を解決する方法として成功している。
これらの問題に対処する新しい非対称スケーラブルクロスモーダルハッシュ(ASCMH)を提案する。
我々のASCMHは、最先端のクロスモーダルハッシュ法よりも精度と効率の点で優れています。
論文 参考訳(メタデータ) (2022-07-26T04:38:47Z) - Making Linear MDPs Practical via Contrastive Representation Learning [101.75885788118131]
マルコフ決定過程(MDP)における次元性の呪いに、低ランク表現を利用することで対処することが一般的である。
本稿では,効率的な表現学習を可能にしつつ,正規化を自動的に保証する線形MDPの代替的定義について考察する。
いくつかのベンチマークにおいて、既存の最先端モデルベースおよびモデルフリーアルゴリズムよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-07-14T18:18:02Z) - Pretrained Cost Model for Distributed Constraint Optimization Problems [37.79733538931925]
分散制約最適化問題(DCOP)は、最適化問題の重要なサブクラスである。
本稿では,DCOPのための新しい非巡回グラフスキーマ表現を提案し,グラフ表現を組み込むためにグラフ注意ネットワーク(GAT)を利用する。
我々のモデルであるGAT-PCMは、幅広いDCOPアルゴリズムを向上するために、オフラインで最適なラベル付きデータで事前訓練される。
論文 参考訳(メタデータ) (2021-12-08T09:24:10Z) - Outlier-Robust Sparse Estimation via Non-Convex Optimization [73.18654719887205]
空間的制約が存在する場合の高次元統計量と非破壊的最適化の関連について検討する。
これらの問題に対する新規で簡単な最適化法を開発した。
結論として、効率よくステーションに収束する一階法は、これらのタスクに対して効率的なアルゴリズムを導出する。
論文 参考訳(メタデータ) (2021-09-23T17:38:24Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
再構成誤差を$l_2,p$ノルム正規化と組み合わせることで,単純かつ効率的な特徴選択手法を提案する。
提案する非教師付きモデルを解くための効率的な最適化アルゴリズムを提案し,アルゴリズムの収束と計算の複雑さを理論的に解析する。
論文 参考訳(メタデータ) (2020-12-29T04:08:38Z) - On the Efficient Implementation of the Matrix Exponentiated Gradient
Algorithm for Low-Rank Matrix Optimization [26.858608065417663]
スペクトル上の凸最適化は、機械学習、信号処理、統計学に重要な応用がある。
低ランク行列による最適化に適したMEGの効率的な実装を提案し、各イテレーションで単一の低ランクSVDのみを使用する。
また,本手法の正しい収束のための効率よく計算可能な証明書も提供する。
論文 参考訳(メタデータ) (2020-12-18T19:14:51Z) - A Scalable, Adaptive and Sound Nonconvex Regularizer for Low-rank Matrix
Completion [60.52730146391456]
そこで我々は,適応的かつ音質の高い"核フロベニウスノルム"と呼ばれる新しい非スケーラブルな低ランク正規化器を提案する。
特異値の計算をバイパスし、アルゴリズムによる高速な最適化を可能にする。
既存の行列学習手法では最速でありながら、最先端の回復性能が得られる。
論文 参考訳(メタデータ) (2020-08-14T18:47:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。