Unifying back-propagation and forward-forward algorithms through model predictive control
- URL: http://arxiv.org/abs/2409.19561v1
- Date: Sun, 29 Sep 2024 05:35:39 GMT
- Title: Unifying back-propagation and forward-forward algorithms through model predictive control
- Authors: Lianhai Ren, Qianxiao Li,
- Abstract summary: We introduce a Model Predictive Control framework for training deep neural networks.
At the same time, it gives rise to a range of intermediate training algorithms with varying look-forward horizons.
We perform a precise analysis of this trade-off on a deep linear network.
- Score: 12.707050104493218
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a Model Predictive Control (MPC) framework for training deep neural networks, systematically unifying the Back-Propagation (BP) and Forward-Forward (FF) algorithms. At the same time, it gives rise to a range of intermediate training algorithms with varying look-forward horizons, leading to a performance-efficiency trade-off. We perform a precise analysis of this trade-off on a deep linear network, where the qualitative conclusions carry over to general networks. Based on our analysis, we propose a principled method to choose the optimization horizon based on given objectives and model specifications. Numerical results on various models and tasks demonstrate the versatility of our method.
Related papers
- Component-based Sketching for Deep ReLU Nets [55.404661149594375]
We develop a sketching scheme based on deep net components for various tasks.
We transform deep net training into a linear empirical risk minimization problem.
We show that the proposed component-based sketching provides almost optimal rates in approximating saturated functions.
arXiv Detail & Related papers (2024-09-21T15:30:43Z) - Novel Saliency Analysis for the Forward Forward Algorithm [0.0]
We introduce the Forward Forward algorithm into neural network training.
This method involves executing two forward passes the first with actual data to promote positive reinforcement, and the second with synthetically generated negative data to enable discriminative learning.
To overcome the limitations inherent in traditional saliency techniques, we developed a bespoke saliency algorithm specifically tailored for the Forward Forward framework.
arXiv Detail & Related papers (2024-09-18T17:21:59Z) - Learning by the F-adjoint [0.0]
In this work, we develop and investigate this theoretical framework to improve some supervised learning algorithm for feed-forward neural network.
Our main result is that by introducing some neural dynamical model combined by the gradient descent algorithm, we derived an equilibrium F-adjoint process.
Experimental results on MNIST and Fashion-MNIST datasets, demonstrate that the proposed approach provide a significant improvements on the standard back-propagation training procedure.
arXiv Detail & Related papers (2024-07-08T13:49:25Z) - Embedded feature selection in LSTM networks with multi-objective
evolutionary ensemble learning for time series forecasting [49.1574468325115]
We present a novel feature selection method embedded in Long Short-Term Memory networks.
Our approach optimize the weights and biases of the LSTM in a partitioned manner.
Experimental evaluations on air quality time series data from Italy and southeast Spain demonstrate that our method substantially improves the ability generalization of conventional LSTMs.
arXiv Detail & Related papers (2023-12-29T08:42:10Z) - Online Network Source Optimization with Graph-Kernel MAB [62.6067511147939]
We propose Grab-UCB, a graph- kernel multi-arms bandit algorithm to learn online the optimal source placement in large scale networks.
We describe the network processes with an adaptive graph dictionary model, which typically leads to sparse spectral representations.
We derive the performance guarantees that depend on network parameters, which further influence the learning curve of the sequential decision strategy.
arXiv Detail & Related papers (2023-07-07T15:03:42Z) - Efficient Training of Physics-Informed Neural Networks with Direct Grid
Refinement Algorithm [0.0]
This research presents the development of an innovative algorithm tailored for the adaptive sampling of residual points within the framework of Physics-Informed Neural Networks (PINNs)
By addressing the limitations inherent in existing adaptive sampling techniques, our proposed methodology introduces a direct mesh refinement approach that effectively ensures both computational efficiency and adaptive point placement.
arXiv Detail & Related papers (2023-06-14T07:04:02Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - Model-Based Deep Learning: On the Intersection of Deep Learning and
Optimization [101.32332941117271]
Decision making algorithms are used in a multitude of different applications.
Deep learning approaches that use highly parametric architectures tuned from data without relying on mathematical models are becoming increasingly popular.
Model-based optimization and data-centric deep learning are often considered to be distinct disciplines.
arXiv Detail & Related papers (2022-05-05T13:40:08Z) - Lessons from AlphaZero for Optimal, Model Predictive, and Adaptive
Control [0.0]
We show that the principal AlphaZero/TDGammon ideas of approximation in value space and rollout apply very broadly to deterministic and optimal control problems.
These ideas can be effectively integrated with other important methodologies such as model control, adaptive control, decentralized control, and neural network-based value and policy approximations.
arXiv Detail & Related papers (2021-08-20T19:17:35Z) - Towards Trustworthy Predictions from Deep Neural Networks with Fast
Adversarial Calibration [2.8935588665357077]
We propose an efficient yet general modelling approach for obtaining well-calibrated, trustworthy probabilities for samples obtained after a domain shift.
We introduce a new training strategy combining an entropy-encouraging loss term with an adversarial calibration loss term and demonstrate that this results in well-calibrated and technically trustworthy predictions.
arXiv Detail & Related papers (2020-12-20T13:39:29Z) - An Ode to an ODE [78.97367880223254]
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the group O(d)
This nested system of two flows provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem.
arXiv Detail & Related papers (2020-06-19T22:05:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.