BadHMP: Backdoor Attack against Human Motion Prediction
- URL: http://arxiv.org/abs/2409.19638v1
- Date: Sun, 29 Sep 2024 09:55:31 GMT
- Title: BadHMP: Backdoor Attack against Human Motion Prediction
- Authors: Chaohui Xu, Si Wang, Chip-Hong Chang,
- Abstract summary: We propose BadHMP, the first backdoor attack that targets specifically human motion prediction.
Our approach involves generating poisoned training samples by embedding a localized backdoor trigger in one arm of the skeleton.
The entire training dataset is traversed to select the most suitable samples for poisoning.
- Score: 11.271295378687887
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Precise future human motion prediction over subsecond horizons from past observations is crucial for various safety-critical applications. To date, only one study has examined the vulnerability of human motion prediction to evasion attacks. In this paper, we propose BadHMP, the first backdoor attack that targets specifically human motion prediction. Our approach involves generating poisoned training samples by embedding a localized backdoor trigger in one arm of the skeleton, causing selected joints to remain relatively still or follow predefined motion in historical time steps. Subsequently, the future sequences are globally modified to the target sequences, and the entire training dataset is traversed to select the most suitable samples for poisoning. Our carefully designed backdoor triggers and targets guarantee the smoothness and naturalness of the poisoned samples, making them stealthy enough to evade detection by the model trainer while keeping the poisoned model unobtrusive in terms of prediction fidelity to untainted sequences. The target sequences can be successfully activated by the designed input sequences even with a low poisoned sample injection ratio. Experimental results on two datasets (Human3.6M and CMU-Mocap) and two network architectures (LTD and HRI) demonstrate the high-fidelity, effectiveness, and stealthiness of BadHMP. Robustness of our attack against fine-tuning defense is also verified.
Related papers
- Long-Tailed Backdoor Attack Using Dynamic Data Augmentation Operations [50.1394620328318]
Existing backdoor attacks mainly focus on balanced datasets.
We propose an effective backdoor attack named Dynamic Data Augmentation Operation (D$2$AO)
Our method can achieve the state-of-the-art attack performance while preserving the clean accuracy.
arXiv Detail & Related papers (2024-10-16T18:44:22Z) - The Victim and The Beneficiary: Exploiting a Poisoned Model to Train a Clean Model on Poisoned Data [4.9676716806872125]
backdoor attacks have posed a serious security threat to the training process of deep neural networks (DNNs)
We propose a novel dual-network training framework: The Victim and The Beneficiary (V&B), which exploits a poisoned model to train a clean model without extra benign samples.
Our framework is effective in preventing backdoor injection and robust to various attacks while maintaining the performance on benign samples.
arXiv Detail & Related papers (2024-04-17T11:15:58Z) - Can We Trust the Unlabeled Target Data? Towards Backdoor Attack and Defense on Model Adaptation [120.42853706967188]
We explore the potential backdoor attacks on model adaptation launched by well-designed poisoning target data.
We propose a plug-and-play method named MixAdapt, combining it with existing adaptation algorithms.
arXiv Detail & Related papers (2024-01-11T16:42:10Z) - RECESS Vaccine for Federated Learning: Proactive Defense Against Model Poisoning Attacks [20.55681622921858]
Model poisoning attacks greatly jeopardize the application of federated learning (FL)
In this work, we propose a novel proactive defense named RECESS against model poisoning attacks.
Unlike previous methods that score each iteration, RECESS considers clients' performance correlation across multiple iterations to estimate the trust score.
arXiv Detail & Related papers (2023-10-09T06:09:01Z) - Adversarial Backdoor Attack by Naturalistic Data Poisoning on Trajectory
Prediction in Autonomous Driving [18.72382517467458]
We propose a novel adversarial backdoor attack against trajectory prediction models.
Our attack affects the victim at training time via naturalistic, hence stealthy, poisoned samples crafted using a novel two-step approach.
We show that the proposed attack is highly effective, as it can significantly hinder the performance of prediction models.
arXiv Detail & Related papers (2023-06-27T19:15:06Z) - Physics-constrained Attack against Convolution-based Human Motion
Prediction [10.57307572170918]
We propose a new adversarial attack method that generates the worst-case perturbation by maximizing the human motion predictor's prediction error with physical constraints.
Specifically, we introduce a novel adaptable scheme that facilitates the attack to suit the scale of the target pose and two physical constraints to enhance the naturalness of the adversarial example.
arXiv Detail & Related papers (2023-06-21T03:01:45Z) - Exploring Model Dynamics for Accumulative Poisoning Discovery [62.08553134316483]
We propose a novel information measure, namely, Memorization Discrepancy, to explore the defense via the model-level information.
By implicitly transferring the changes in the data manipulation to that in the model outputs, Memorization Discrepancy can discover the imperceptible poison samples.
We thoroughly explore its properties and propose Discrepancy-aware Sample Correction (DSC) to defend against accumulative poisoning attacks.
arXiv Detail & Related papers (2023-06-06T14:45:24Z) - Understanding the Vulnerability of Skeleton-based Human Activity Recognition via Black-box Attack [53.032801921915436]
Human Activity Recognition (HAR) has been employed in a wide range of applications, e.g. self-driving cars.
Recently, the robustness of skeleton-based HAR methods have been questioned due to their vulnerability to adversarial attacks.
We show such threats exist, even when the attacker only has access to the input/output of the model.
We propose the very first black-box adversarial attack approach in skeleton-based HAR called BASAR.
arXiv Detail & Related papers (2022-11-21T09:51:28Z) - Untargeted Backdoor Attack against Object Detection [69.63097724439886]
We design a poison-only backdoor attack in an untargeted manner, based on task characteristics.
We show that, once the backdoor is embedded into the target model by our attack, it can trick the model to lose detection of any object stamped with our trigger patterns.
arXiv Detail & Related papers (2022-11-02T17:05:45Z) - Towards Adversarial Patch Analysis and Certified Defense against Crowd
Counting [61.99564267735242]
Crowd counting has drawn much attention due to its importance in safety-critical surveillance systems.
Recent studies have demonstrated that deep neural network (DNN) methods are vulnerable to adversarial attacks.
We propose a robust attack strategy called Adversarial Patch Attack with Momentum to evaluate the robustness of crowd counting models.
arXiv Detail & Related papers (2021-04-22T05:10:55Z) - Adversarial Refinement Network for Human Motion Prediction [61.50462663314644]
Two popular methods, recurrent neural networks and feed-forward deep networks, are able to predict rough motion trend.
We propose an Adversarial Refinement Network (ARNet) following a simple yet effective coarse-to-fine mechanism with novel adversarial error augmentation.
arXiv Detail & Related papers (2020-11-23T05:42:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.