Machine Learning for Raman Spectroscopy-based Cyber-Marine Fish Biochemical Composition Analysis
- URL: http://arxiv.org/abs/2409.19688v1
- Date: Sun, 29 Sep 2024 12:28:19 GMT
- Title: Machine Learning for Raman Spectroscopy-based Cyber-Marine Fish Biochemical Composition Analysis
- Authors: Yun Zhou, Gang Chen, Bing Xue, Mengjie Zhang, Jeremy S. Rooney, Kirill Lagutin, Andrew MacKenzie, Keith C. Gordon, Daniel P. Killeen,
- Abstract summary: This paper proposes a new design of Convolutional Neural Networks (CNNs) for jointly predicting water, protein, and lipids yield.
We are the first to conduct a successful study employing CNNs to analyze the biochemical composition of fish based on a very small Raman spectroscopic dataset.
- Score: 7.075575292983362
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid and accurate detection of biochemical compositions in fish is a crucial real-world task that facilitates optimal utilization and extraction of high-value products in the seafood industry. Raman spectroscopy provides a promising solution for quickly and non-destructively analyzing the biochemical composition of fish by associating Raman spectra with biochemical reference data using machine learning regression models. This paper investigates different regression models to address this task and proposes a new design of Convolutional Neural Networks (CNNs) for jointly predicting water, protein, and lipids yield. To the best of our knowledge, we are the first to conduct a successful study employing CNNs to analyze the biochemical composition of fish based on a very small Raman spectroscopic dataset. Our approach combines a tailored CNN architecture with the comprehensive data preparation procedure, effectively mitigating the challenges posed by extreme data scarcity. The results demonstrate that our CNN can significantly outperform two state-of-the-art CNN models and multiple traditional machine learning models, paving the way for accurate and automated analysis of fish biochemical composition.
Related papers
- YZS-model: A Predictive Model for Organic Drug Solubility Based on Graph Convolutional Networks and Transformer-Attention [9.018408514318631]
Traditional methods often miss complex molecular structures, leading to inaccuracies.
We introduce the YZS-Model, a deep learning framework integrating Graph Convolutional Networks (GCN), Transformer architectures, and Long Short-Term Memory (LSTM) networks.
YZS-Model achieved an $R2$ of 0.59 and an RMSE of 0.57, outperforming benchmark models.
arXiv Detail & Related papers (2024-06-27T12:40:29Z) - Deep Learning Domain Adaptation to Understand Physico-Chemical Processes from Fluorescence Spectroscopy Small Datasets: Application to Ageing of Olive Oil [4.14360329494344]
Fluorescence spectroscopy is a fundamental tool in life sciences and chemistry, widely used for applications such as environmental monitoring, food quality control, and biomedical diagnostics.
Analysis of spectroscopic data with deep learning, in particular of fluorescence excitation-emission matrices (EEMs), presents significant challenges due to the typically small and sparse datasets available.
This study proposes a new approach that exploits domain adaptation with pretrained vision models, alongside a novel interpretability algorithm to address these challenges.
arXiv Detail & Related papers (2024-06-14T13:41:21Z) - Protein binding affinity prediction under multiple substitutions applying eGNNs on Residue and Atomic graphs combined with Language model information: eGRAL [1.840390797252648]
Deep learning is increasingly recognized as a powerful tool capable of bridging the gap between in-silico predictions and in-vitro observations.
We propose eGRAL, a novel graph neural network architecture designed for predicting binding affinity changes from amino acid substitutions in protein complexes.
eGRAL leverages residue, atomic and evolutionary scales, thanks to features extracted from protein large language models.
arXiv Detail & Related papers (2024-05-03T10:33:19Z) - Neural Echos: Depthwise Convolutional Filters Replicate Biological
Receptive Fields [56.69755544814834]
We present evidence suggesting that depthwise convolutional kernels are effectively replicating the biological receptive fields observed in the mammalian retina.
We propose a scheme that draws inspiration from the biological receptive fields.
arXiv Detail & Related papers (2024-01-18T18:06:22Z) - Optimizations of Autoencoders for Analysis and Classification of
Microscopic In Situ Hybridization Images [68.8204255655161]
We propose a deep-learning framework to detect and classify areas of microscopic images with similar levels of gene expression.
The data we analyze requires an unsupervised learning model for which we employ a type of Artificial Neural Network - Deep Learning Autoencoders.
arXiv Detail & Related papers (2023-04-19T13:45:28Z) - ChemVise: Maximizing Out-of-Distribution Chemical Detection with the
Novel Application of Zero-Shot Learning [60.02503434201552]
This research proposes learning approximations of complex exposures from training sets of simple ones.
We demonstrate this approach to synthetic sensor responses surprisingly improves the detection of out-of-distribution obscured chemical analytes.
arXiv Detail & Related papers (2023-02-09T20:19:57Z) - The Preliminary Results on Analysis of TAIGA-IACT Images Using
Convolutional Neural Networks [68.8204255655161]
The aim of the work is to study the possibility of the machine learning application to solve the tasks set for TAIGA-IACT.
The method of Convolutional Neural Networks (CNN) was applied to process and analyze Monte-Carlo events simulated with CORSIKA.
arXiv Detail & Related papers (2021-12-19T15:17:20Z) - Predicting Chemical Hazard across Taxa through Machine Learning [0.3262230127283452]
We analyze the relevance of taxonomy and experimental setup, and show that taking them into account can lead to considerable improvements in the classification performance.
We use our approach with standard machine learning models (K-nearest neighbors, random forests and deep neural networks), as well as the recently proposed Read-Across Structure Activity Relationship (RASAR) models.
arXiv Detail & Related papers (2021-10-07T15:33:58Z) - Physical model simulator-trained neural network for computational 3D
phase imaging of multiple-scattering samples [1.112751058850223]
We develop a new model-based data normalization pre-processing procedure for homogenizing the sample contrast.
We demonstrate this framework's capabilities on experimental measurements of epithelial buccal cells and Caenorhabditis elegans worms.
arXiv Detail & Related papers (2021-03-29T17:43:56Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Graph Neural Networks for the Prediction of Substrate-Specific Organic
Reaction Conditions [79.45090959869124]
We present a systematic investigation using graph neural networks (GNNs) to model organic chemical reactions.
We evaluate seven different GNN architectures for classification tasks pertaining to the identification of experimental reagents and conditions.
arXiv Detail & Related papers (2020-07-08T17:21:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.