Mechanics and Design of Metastructured Auxetic Patches with Bio-inspired Materials
- URL: http://arxiv.org/abs/2501.06233v1
- Date: Wed, 08 Jan 2025 03:57:20 GMT
- Title: Mechanics and Design of Metastructured Auxetic Patches with Bio-inspired Materials
- Authors: Yingbin Chen, Milad Arzani, Xuan Mu, Sophia Jin, Shaoping Xiao,
- Abstract summary: This study focuses on neural networks-based computational modeling of auxetic patches with a sinusoidal metastructure fabricated from silk fibroin.
The proposed framework represents a significant advancement in the design of bio-inspired metastructures for medical applications.
- Score: 0.5033155053523042
- License:
- Abstract: Metastructured auxetic patches, characterized by negative Poisson's ratios, offer unique mechanical properties that closely resemble the behavior of human tissues and organs. As a result, these patches have gained significant attention for their potential applications in organ repair and tissue regeneration. This study focuses on neural networks-based computational modeling of auxetic patches with a sinusoidal metastructure fabricated from silk fibroin, a bio-inspired material known for its biocompatibility and strength. The primary objective of this research is to introduce a novel, data-driven framework for patch design. To achieve this, we conducted experimental fabrication and mechanical testing to determine material properties and validate the corresponding finite element models. Finite element simulations were then employed to generate the necessary data, while greedy sampling, an active learning technique, was utilized to reduce the computational cost associated with data labeling. Two neural networks were trained to accurately predict Poisson's ratios and stresses for strains up to 15\%, respectively. Both models achieved $R^2$ scores exceeding 0.995, which indicates highly reliable predictions. Building on this, we developed a neural network-based design model capable of tailoring patch designs to achieve specific mechanical properties. This model demonstrated superior performance when compared to traditional optimization methods, such as genetic algorithms, by providing more efficient and precise design solutions. The proposed framework represents a significant advancement in the design of bio-inspired metastructures for medical applications, paving the way for future innovations in tissue engineering and regenerative medicine.
Related papers
- Thermodynamics-informed graph neural networks for real-time simulation of digital human twins [2.6811507121199325]
This paper presents a novel methodology aimed at advancing current lines of research in soft tissue simulation.
The proposed approach integrates the geometric bias of graph neural networks with the physical bias derived from the imposition of a metriplectic structure.
Based on the adopted methodologies, we propose a model that predicts human liver responses to traction and compression loads in as little as 7.3 milliseconds.
arXiv Detail & Related papers (2024-12-16T18:01:40Z) - Neural Echos: Depthwise Convolutional Filters Replicate Biological
Receptive Fields [56.69755544814834]
We present evidence suggesting that depthwise convolutional kernels are effectively replicating the biological receptive fields observed in the mammalian retina.
We propose a scheme that draws inspiration from the biological receptive fields.
arXiv Detail & Related papers (2024-01-18T18:06:22Z) - Physics-informed Neural Network Estimation of Material Properties in Soft Tissue Nonlinear Biomechanical Models [2.8763745263714005]
We propose a new approach which relies on the combination of physics-informed neural networks (PINNs) with three-dimensional soft tissue nonlinear biomechanical models.
The proposed learning algorithm encodes information from a limited amount of displacement and, in some cases, strain data, that can be routinely acquired in the clinical setting.
Several benchmarks are presented to show the accuracy and robustness of the proposed method.
arXiv Detail & Related papers (2023-12-15T13:41:20Z) - Topological, or Non-topological? A Deep Learning Based Prediction [0.0]
Prediction and discovery of new materials with desired properties are at the forefront of quantum science and technology research.
A major bottleneck in this field is the computational resources and time complexity related to finding new materials from ab initio calculations.
In this work, an effective and robust deep learning-based model is proposed by incorporating persistent homology and graph neural network.
arXiv Detail & Related papers (2023-10-29T05:29:49Z) - Exploring hyperelastic material model discovery for human brain cortex:
multivariate analysis vs. artificial neural network approaches [10.003764827561238]
This study aims to identify the most favorable material model for human brain tissue.
We apply artificial neural network and multiple regression methods to a generalization of widely accepted classic models.
arXiv Detail & Related papers (2023-10-16T18:49:59Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
Lithography modeling is a crucial problem in chip design to ensure a chip design mask is manufacturable.
Recent developments in machine learning have provided alternative solutions in replacing the time-consuming lithography simulations with deep neural networks.
We propose a litho-aware data augmentation framework to resolve the dilemma of limited data and improve the machine learning model performance.
arXiv Detail & Related papers (2022-10-27T20:53:39Z) - A Physics-Guided Neural Operator Learning Approach to Model Biological
Tissues from Digital Image Correlation Measurements [3.65211252467094]
We present a data-driven correlation to biological tissue modeling, which aims to predict the displacement field based on digital image correlation (DIC) measurements under unseen loading scenarios.
A material database is constructed from the DIC displacement tracking measurements of multiple biaxial stretching protocols on a porcine tricuspid valve leaflet.
The material response is modeled as a solution operator from the loading to the resultant displacement field, with the material properties learned implicitly from the data and naturally embedded in the network parameters.
arXiv Detail & Related papers (2022-04-01T04:56:41Z) - On the Exploitation of Neuroevolutionary Information: Analyzing the Past
for a More Efficient Future [60.99717891994599]
We propose an approach that extracts information from neuroevolutionary runs, and use it to build a metamodel.
We inspect the best structures found during neuroevolutionary searches of generative adversarial networks with varying characteristics.
arXiv Detail & Related papers (2021-05-26T20:55:29Z) - Pathloss modeling for in-body optical wireless communications [65.33908037519238]
Optical wireless communications (OWCs) have been recognized as a candidate enabler of next generation in-body nano-scale networks and implants.
This paper focuses on presenting a general pathloss model for in-body OWCs.
arXiv Detail & Related papers (2021-05-06T17:17:45Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
We propose a novel Machine Learning architecture, which allows us to infuse a neural deep network with human-powered abstraction on the level of data.
Specifically, we train a generative model simultaneously on natural and synthetic data, so that it learns a shared representation, from which a target variable, such as the cell count, can be reliably estimated.
arXiv Detail & Related papers (2020-10-20T08:36:51Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
We present a probabilistic programmed deep kernel learning approach to personalized, predictive modeling of neurodegenerative diseases.
Our analysis considers a spectrum of neural and symbolic machine learning approaches.
We run evaluations on the problem of Alzheimer's disease prediction, yielding results that surpass deep learning.
arXiv Detail & Related papers (2020-09-16T15:16:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.