論文の概要: Black-Box Segmentation of Electronic Medical Records
- arxiv url: http://arxiv.org/abs/2409.19796v1
- Date: Sun, 29 Sep 2024 21:45:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 22:04:59.468649
- Title: Black-Box Segmentation of Electronic Medical Records
- Title(参考訳): 電子カルテのブラックボックスセグメンテーション
- Authors: Hongyi Yuan, Sheng Yu,
- Abstract要約: 本研究では,簡単な文埋め込みモデルとニューラルネットワークを用いたブラックボックスセグメンテーション手法と適切なトレーニング手法を提案する。
普遍的な適応性を達成するために、異なるセクションの方向のフォーマットでデータセット上でモデルをトレーニングする。
先進的な深層学習に基づくNLP法の比較を行い,本手法は各種試験データに対して最適セグメンテーション精度(98%以上)を適切な学習コーパスで達成する。
- 参考スコア(独自算出の注目度): 9.889857571897979
- License:
- Abstract: Electronic medical records (EMRs) contain the majority of patients' healthcare details. It is an abundant resource for developing an automatic healthcare system. Most of the natural language processing (NLP) studies on EMR processing, such as concept extraction, are adversely affected by the inaccurate segmentation of EMR sections. At the same time, not enough attention has been given to the accurate sectioning of EMRs. The information that may occur in section structures is unvalued. This work focuses on the segmentation of EMRs and proposes a black-box segmentation method using a simple sentence embedding model and neural network, along with a proper training method. To achieve universal adaptivity, we train our model on the dataset with different section headings formats. We compare several advanced deep learning-based NLP methods, and our method achieves the best segmentation accuracies (above 98%) on various test data with a proper training corpus.
- Abstract(参考訳): 電子カルテ(EMR)には、患者の医療詳細の大半が含まれている。
それは、自動医療システムを開発するための豊富な資源である。
概念抽出などのEMR処理に関する自然言語処理(NLP)研究のほとんどは、EMRセクションの不正確なセグメンテーションの影響を受けている。
同時に、EMRの正確な切断には十分な注意が払われていない。
セクション構造で発生する可能性のある情報は、未評価である。
本研究は、EMRのセグメンテーションに焦点を当て、簡単な文埋め込みモデルとニューラルネットワークを用いたブラックボックスセグメンテーション法と適切なトレーニング手法を提案する。
普遍的な適応性を達成するために、異なるセクションの方向のフォーマットでデータセット上でモデルをトレーニングする。
先進的な深層学習に基づくNLP法の比較を行い,本手法は各種試験データに対して最適セグメンテーション精度(98%以上)を適切な学習コーパスで達成する。
関連論文リスト
- Improving Segment Anything on the Fly: Auxiliary Online Learning and Adaptive Fusion for Medical Image Segmentation [52.172885882728174]
医療画像の文脈では、SAMがそのセグメンテーション予測を生成した後、人間の専門家が特定のテストサンプルのセグメンテーションを修正することは珍しくない。
我々は、オンライン機械学習の利点を活用して、テスト期間中にSegment Anything(SA)を強化する新しいアプローチを導入する。
医用画像におけるSAのセグメンテーション品質を改善することを目的として,オンライン学習のための修正アノテーションを用いた。
論文 参考訳(メタデータ) (2024-06-03T03:16:25Z) - I-MedSAM: Implicit Medical Image Segmentation with Segment Anything [24.04558900909617]
提案するI-MedSAMは、連続表現とSAMの両方の利点を利用して、クロスドメイン能力と正確な境界線を求める。
トレーニング可能なパラメータが1.6Mしかない提案手法は、離散的および暗黙的を含む既存の手法よりも優れている。
論文 参考訳(メタデータ) (2023-11-28T00:43:52Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
本稿では,学習可能な重みに基づくハイブリッド医療画像セグメンテーション手法を提案する。
我々のアプローチはどんなハイブリッドモデルにも簡単に統合でき、外部のトレーニングデータを必要としない。
多臓器・肺がんセグメンテーションタスクの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-06-15T17:55:05Z) - Multi-Modal Evaluation Approach for Medical Image Segmentation [4.989480853499916]
本稿では,異なるセグメンテーション手法の有効性を評価するために,新しいマルチモーダル評価(MME)手法を提案する。
本稿では, 検出特性, 境界アライメント, 均一性, 総体積, 相対体積など, 関連性, 解釈可能な新しい特徴を紹介する。
提案するアプローチはオープンソースで,使用することができる。
論文 参考訳(メタデータ) (2023-02-08T15:31:33Z) - A Marker-based Neural Network System for Extracting Social Determinants
of Health [12.6970199179668]
健康の社会的決定因子(SDoH)は、患者の医療の質と格差を左右する。
多くのSDoHアイテムは、電子健康記録の構造化形式でコード化されていない。
我々は,臨床ノートから自動的にSDoH情報を抽出する,名前付きエンティティ認識(NER),関係分類(RC),テキスト分類手法を含む多段階パイプラインを探索する。
論文 参考訳(メタデータ) (2022-12-24T18:40:23Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
医用画像セグメンテーションのためのPatch Confidence Adrial Training (PCA) と呼ばれる半教師付き対向法を提案する。
PCAは各パッチの画素構造とコンテキスト情報を学習し、十分な勾配フィードバックを得る。
本手法は, 医用画像のセグメンテーションにおいて, 最先端の半教師付き手法より優れており, その有効性を示している。
論文 参考訳(メタデータ) (2022-07-24T07:45:47Z) - Deep Learning Based Cardiac MRI Segmentation: Do We Need Experts? [12.36854197042851]
非専門的な基盤データに基づいてトレーニングされたセグメンテーションニューラルネットワークは、すべての実用目的に対して、専門家の基盤データと同様に優れたものであることを示す。
我々は、心臓データセットのアノテーションを効率的かつ安価に作成する機会を強調した。
論文 参考訳(メタデータ) (2021-07-23T20:10:58Z) - Anatomy-guided Multimodal Registration by Learning Segmentation without
Ground Truth: Application to Intraprocedural CBCT/MR Liver Segmentation and
Registration [12.861503169117208]
マルチモーダル画像登録は、診断医療画像と画像誘導介入に多くの応用がある。
周術期獲得診断画像を周術期内環境に登録する能力は、周術期内腫瘍ターゲティングを改善する可能性がある。
対象のモダリティ基礎真理を含まないセグメンテーション学習のためのセグメンテーションネットワーク(APA2Seg-Net)に対する解剖学的保護ドメイン適応を提案する。
論文 参考訳(メタデータ) (2021-04-14T18:07:03Z) - Active learning for medical code assignment [55.99831806138029]
臨床領域における多ラベルテキスト分類におけるアクティブラーニング(AL)の有効性を示す。
MIMIC-IIIデータセットにICD-9コードを自動的に割り当てるために、よく知られたALメソッドのセットを適用します。
その結果、有益なインスタンスの選択は、大幅に減少したトレーニングセットで満足のいく分類を提供する。
論文 参考訳(メタデータ) (2021-04-12T18:11:17Z) - Towards Cross-modality Medical Image Segmentation with Online Mutual
Knowledge Distillation [71.89867233426597]
本稿では,あるモダリティから学習した事前知識を活用し,別のモダリティにおけるセグメンテーション性能を向上させることを目的とする。
モーダル共有知識を徹底的に活用する新しい相互知識蒸留法を提案する。
MMWHS 2017, MMWHS 2017 を用いた多クラス心筋セグメンテーション実験の結果, CT セグメンテーションに大きな改善が得られた。
論文 参考訳(メタデータ) (2020-10-04T10:25:13Z) - 3D medical image segmentation with labeled and unlabeled data using
autoencoders at the example of liver segmentation in CT images [58.720142291102135]
本研究では、畳み込みニューラルネットワークによるセグメンテーションを改善するために、オートエンコーダ抽出機能の可能性を検討する。
コンボリューション・オートエンコーダを用いてラベルのないデータから特徴を抽出し,CT画像における3次元肝セグメンテーションの目標タスクを実行するために,マルチスケールの完全畳み込みCNNを用いた。
論文 参考訳(メタデータ) (2020-03-17T20:20:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。