PhishGuard: A Multi-Layered Ensemble Model for Optimal Phishing Website Detection
- URL: http://arxiv.org/abs/2409.19825v1
- Date: Sun, 29 Sep 2024 23:15:57 GMT
- Title: PhishGuard: A Multi-Layered Ensemble Model for Optimal Phishing Website Detection
- Authors: Md Sultanul Islam Ovi, Md. Hasibur Rahman, Mohammad Arif Hossain,
- Abstract summary: Phishing attacks are a growing cybersecurity threat, leveraging deceptive techniques to steal sensitive information through malicious websites.
This paper introduces PhishGuard, an optimal custom ensemble model designed to improve phishing site detection.
The model combines multiple machine learning classifiers, including Random Forest, Gradient Boosting, CatBoost, and XGBoost, to enhance detection accuracy.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Phishing attacks are a growing cybersecurity threat, leveraging deceptive techniques to steal sensitive information through malicious websites. To combat these attacks, this paper introduces PhishGuard, an optimal custom ensemble model designed to improve phishing site detection. The model combines multiple machine learning classifiers, including Random Forest, Gradient Boosting, CatBoost, and XGBoost, to enhance detection accuracy. Through advanced feature selection methods such as SelectKBest and RFECV, and optimizations like hyperparameter tuning and data balancing, the model was trained and evaluated on four publicly available datasets. PhishGuard outperformed state-of-the-art models, achieving a detection accuracy of 99.05% on one of the datasets, with similarly high results across other datasets. This research demonstrates that optimization methods in conjunction with ensemble learning greatly improve phishing detection performance.
Related papers
- Adapting to Cyber Threats: A Phishing Evolution Network (PEN) Framework for Phishing Generation and Analyzing Evolution Patterns using Large Language Models [10.58220151364159]
Phishing remains a pervasive cyber threat, as attackers craft deceptive emails to lure victims into revealing sensitive information.
While Artificial Intelligence (AI) has become a key component in defending against phishing attacks, these approaches face critical limitations.
We propose the Phishing Evolution Network (PEN), a framework leveraging large language models (LLMs) and adversarial training mechanisms to continuously generate high quality and realistic diverse phishing samples.
arXiv Detail & Related papers (2024-11-18T09:03:51Z) - Browser Extension for Fake URL Detection [0.0]
This paper presents a Browser Extension that uses machine learning models to enhance online security.
The proposed solution uses LGBM classifier for classification of Phishing websites.
The Model for Spam email detection uses Multinomial NB algorithm which has been trained on a dataset with over 5500 messages.
arXiv Detail & Related papers (2024-11-16T07:22:59Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
We introduce an approach that is both general and parameter-efficient for face forgery detection.
We design a forgery-style mixture formulation that augments the diversity of forgery source domains.
We show that the designed model achieves state-of-the-art generalizability with significantly reduced trainable parameters.
arXiv Detail & Related papers (2024-08-23T01:53:36Z) - PhishAgent: A Robust Multimodal Agent for Phishing Webpage Detection [26.106113544525545]
Phishing attacks are a major threat to online security, exploiting user vulnerabilities to steal sensitive information.
Various methods have been developed to counteract phishing, each with varying levels of accuracy, but they also encounter notable limitations.
In this study, we introduce PhishAgent, a multimodal agent that combines a wide range of tools, integrating both online and offline knowledge bases with Multimodal Large Language Models (MLLMs)
This combination leads to broader brand coverage, which enhances brand recognition and recall.
arXiv Detail & Related papers (2024-08-20T11:14:21Z) - A Sophisticated Framework for the Accurate Detection of Phishing Websites [0.0]
Phishing is an increasingly sophisticated form of cyberattack that is inflicting huge financial damage to corporations throughout the globe.
This paper proposes a comprehensive methodology for detecting phishing websites.
A combination of feature selection, greedy algorithm, cross-validation, and deep learning methods have been utilized to construct a sophisticated stacking ensemble.
arXiv Detail & Related papers (2024-03-13T14:26:25Z) - AntiPhishStack: LSTM-based Stacked Generalization Model for Optimized
Phishing URL Detection [0.32141666878560626]
This paper introduces a two-phase stack generalized model named AntiPhishStack, designed to detect phishing sites.
The model leverages the learning of URLs and character-level TF-IDF features symmetrically, enhancing its ability to combat emerging phishing threats.
Experimental validation on two benchmark datasets, comprising benign and phishing or malicious URLs, demonstrates the model's exceptional performance, achieving a notable 96.04% accuracy compared to existing studies.
arXiv Detail & Related papers (2024-01-17T03:44:27Z) - Model Stealing Attack against Recommender System [85.1927483219819]
Some adversarial attacks have achieved model stealing attacks against recommender systems.
In this paper, we constrain the volume of available target data and queries and utilize auxiliary data, which shares the item set with the target data, to promote model stealing attacks.
arXiv Detail & Related papers (2023-12-18T05:28:02Z) - AdaptGuard: Defending Against Universal Attacks for Model Adaptation [129.2012687550069]
We study the vulnerability to universal attacks transferred from the source domain during model adaptation algorithms.
We propose a model preprocessing framework, named AdaptGuard, to improve the security of model adaptation algorithms.
arXiv Detail & Related papers (2023-03-19T07:53:31Z) - How Robust are Randomized Smoothing based Defenses to Data Poisoning? [66.80663779176979]
We present a previously unrecognized threat to robust machine learning models that highlights the importance of training-data quality.
We propose a novel bilevel optimization-based data poisoning attack that degrades the robustness guarantees of certifiably robust classifiers.
Our attack is effective even when the victim trains the models from scratch using state-of-the-art robust training methods.
arXiv Detail & Related papers (2020-12-02T15:30:21Z) - Voting based ensemble improves robustness of defensive models [82.70303474487105]
We study whether it is possible to create an ensemble to further improve robustness.
By ensembling several state-of-the-art pre-trained defense models, our method can achieve a 59.8% robust accuracy.
arXiv Detail & Related papers (2020-11-28T00:08:45Z) - Bayesian Optimization with Machine Learning Algorithms Towards Anomaly
Detection [66.05992706105224]
In this paper, an effective anomaly detection framework is proposed utilizing Bayesian Optimization technique.
The performance of the considered algorithms is evaluated using the ISCX 2012 dataset.
Experimental results show the effectiveness of the proposed framework in term of accuracy rate, precision, low-false alarm rate, and recall.
arXiv Detail & Related papers (2020-08-05T19:29:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.