論文の概要: On The Planning Abilities of OpenAI's o1 Models: Feasibility, Optimality, and Generalizability
- arxiv url: http://arxiv.org/abs/2409.19924v1
- Date: Mon, 30 Sep 2024 03:58:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-01 22:05:44.322909
- Title: On The Planning Abilities of OpenAI's o1 Models: Feasibility, Optimality, and Generalizability
- Title(参考訳): OpenAIのo1モデルの計画能力について:可能性、最適性、一般化可能性
- Authors: Kevin Wang, Junbo Li, Neel P. Bhatt, Yihan Xi, Qiang Liu, Ufuk Topcu, Zhangyang Wang,
- Abstract要約: さまざまなベンチマークタスクでOpenAIのo1モデルの計画能力を評価する。
その結果,o1-preview は GPT-4 よりもタスク制約に順応していることがわかった。
- 参考スコア(独自算出の注目度): 59.72892401927283
- License:
- Abstract: Recent advancements in Large Language Models (LLMs) have showcased their ability to perform complex reasoning tasks, but their effectiveness in planning remains underexplored. In this study, we evaluate the planning capabilities of OpenAI's o1 models across a variety of benchmark tasks, focusing on three key aspects: feasibility, optimality, and generalizability. Through empirical evaluations on constraint-heavy tasks (e.g., $\textit{Barman}$, $\textit{Tyreworld}$) and spatially complex environments (e.g., $\textit{Termes}$, $\textit{Floortile}$), we highlight o1-preview's strengths in self-evaluation and constraint-following, while also identifying bottlenecks in decision-making and memory management, particularly in tasks requiring robust spatial reasoning. Our results reveal that o1-preview outperforms GPT-4 in adhering to task constraints and managing state transitions in structured environments. However, the model often generates suboptimal solutions with redundant actions and struggles to generalize effectively in spatially complex tasks. This pilot study provides foundational insights into the planning limitations of LLMs, offering key directions for future research on improving memory management, decision-making, and generalization in LLM-based planning.
- Abstract(参考訳): 近年のLarge Language Models (LLMs) の進歩は、複雑な推論タスクを実行する能力を示したが、計画におけるその有効性は未解明のままである。
本研究では,OpenAIのo1モデルの様々なベンチマークタスクにおける計画能力を評価し,実現可能性,最適性,一般化性という3つの重要な側面に注目した。
制約重大タスク(例: $\textit{Barman}$, $\textit{Tyreworld}$)と空間的に複雑な環境(例: $\textit{Termes}$, $\textit{Floortile}$)に関する実証的な評価を通じて、自己評価と制約追従におけるo1-previewの強みを強調しながら、意思決定やメモリ管理におけるボトルネックを識別する。
その結果,o1-preview は GPT-4 よりもタスク制約に順応し,構造化環境における状態遷移を管理するのに優れていた。
しかし、モデルはしばしば冗長な動作を伴う最適下解を生成し、空間的に複雑なタスクにおいて効果的に一般化するのに苦労する。
このパイロット研究は、LCMの計画限界に関する基礎的な洞察を提供し、LCMベースの計画におけるメモリ管理、意思決定、一般化に関する今後の研究の鍵となる方向性を提供する。
関連論文リスト
- VSP: Assessing the dual challenges of perception and reasoning in spatial planning tasks for VLMs [102.36953558562436]
視覚言語モデル(VLM)は、エキサイティングな言語モデル(LM)のクラスである。
VLMの未調査能力の1つは、視覚空間計画である。
本研究は,これらのモデルにおける空間計画能力を概ね評価するベンチマークを提案する。
論文 参考訳(メタデータ) (2024-07-02T00:24:01Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
長文言語モデル(LCLM)は、従来、検索システムやデータベースといった外部ツールに依存していたタスクへのアプローチに革命をもたらす可能性がある。
実世界のタスクのベンチマークであるLOFTを導入し、文脈内検索と推論においてLCLMの性能を評価するために設計された数百万のトークンを出力する。
以上の結果からLCLMは,これらのタスクを明示的に訓練したことがないにも関わらず,最先端の検索システムやRAGシステムと競合する驚くべき能力を示した。
論文 参考訳(メタデータ) (2024-06-19T00:28:58Z) - Exploring and Benchmarking the Planning Capabilities of Large Language Models [57.23454975238014]
古典的計画領域と自然言語シナリオの両方を含むベンチマークスイートを構築した。
第2に、LLM計画の強化にICL(In-context Learning)を用いることについて検討し、文脈長の増大と計画性能の向上の直接的な関係について検討する。
第3に、最適計画パスに対する微調整LDMの正の効果と、モデル駆動探索手法の導入の有効性を実証する。
論文 参考訳(メタデータ) (2024-06-18T22:57:06Z) - Unlocking Large Language Model's Planning Capabilities with Maximum Diversity Fine-tuning [10.704716790096498]
大規模言語モデル(LLM)は、技術やシステム設計の推進によって達成された、目覚ましいタスク解決能力を示している。
本稿では,LLMの計画能力に及ぼす微調整の影響について検討する。
計画領域におけるファインチューニングのサンプル効率を向上させるために,MDFT(Maximum Diversity Fine-Tuning)戦略を提案する。
論文 参考訳(メタデータ) (2024-06-15T03:06:14Z) - Scalable Online Exploration via Coverability [45.66375686120087]
探索は、特に関数近似を必要とする高次元領域において、強化学習において大きな課題である。
従来の探索手法を一般化し,3つの基本デシラタをサポートする新しい目的である$L_Coverageを導入する。
$L_Coverageは、カバー可能性の低いMDPにおけるオンライン(リワードフリーまたは報酬駆動)強化学習のための、最初の計算効率のよいモデルベースおよびモデルフリーのアルゴリズムを可能にする。
論文 参考訳(メタデータ) (2024-03-11T10:14:06Z) - Building Minimal and Reusable Causal State Abstractions for
Reinforcement Learning [63.58935783293342]
Causal Bisimulation Modeling (CBM) は、各タスクのダイナミクスと報酬関数の因果関係を学習し、最小限のタスク固有の抽象化を導出する手法である。
CBMの学習された暗黙的ダイナミクスモデルは、明確なものよりも根底にある因果関係と状態抽象化を正確に識別する。
論文 参考訳(メタデータ) (2024-01-23T05:43:15Z) - EgoPlan-Bench: Benchmarking Multimodal Large Language Models for Human-Level Planning [84.6451394629312]
実世界のシナリオにおけるMLLMの計画能力を評価するベンチマークであるEgoPlan-Benchを紹介する。
EgoPlan-Benchは、人間レベルのタスクプランニングを実現するためのMLLMの改善のかなりの範囲を浮き彫りにする。
また,EgoPlan-Bench上でのモデル性能を効果的に向上する特殊命令チューニングデータセットであるEgoPlan-ITを提案する。
論文 参考訳(メタデータ) (2023-12-11T03:35:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。