論文の概要: Using Large Multimodal Models to Extract Knowledge Components for Knowledge Tracing from Multimedia Question Information
- arxiv url: http://arxiv.org/abs/2409.20167v1
- Date: Mon, 30 Sep 2024 10:26:29 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-02 13:07:12.738289
- Title: Using Large Multimodal Models to Extract Knowledge Components for Knowledge Tracing from Multimedia Question Information
- Title(参考訳): 大規模マルチモーダルモデルを用いてマルチメディア質問情報から知識追跡のための知識成分を抽出する
- Authors: Hyeongdon Moon, Richard Davis, Seyed Parsa Neshaei, Pierre Dillenbourg,
- Abstract要約: 本稿では,学習内容から知識コンポーネントを自動的に抽出する手法を提案する。
以上の結果から,自動抽出した知識コンポーネントは,ラベルを効果的に置き換えることが可能であることが示唆された。
- 参考スコア(独自算出の注目度): 5.777167013394619
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Knowledge tracing models have enabled a range of intelligent tutoring systems to provide feedback to students. However, existing methods for knowledge tracing in learning sciences are predominantly reliant on statistical data and instructor-defined knowledge components, making it challenging to integrate AI-generated educational content with traditional established methods. We propose a method for automatically extracting knowledge components from educational content using instruction-tuned large multimodal models. We validate this approach by comprehensively evaluating it against knowledge tracing benchmarks in five domains. Our results indicate that the automatically extracted knowledge components can effectively replace human-tagged labels, offering a promising direction for enhancing intelligent tutoring systems in limited-data scenarios, achieving more explainable assessments in educational settings, and laying the groundwork for automated assessment.
- Abstract(参考訳): 知識追跡モデルは、学生にフィードバックを提供するために、様々なインテリジェントなチューターシステムを可能にした。
しかし、学習科学における知識追跡のための既存の手法は、統計データやインストラクターが定義した知識コンポーネントに大きく依存しているため、AI生成した教育コンテンツを従来の確立された手法と統合することは困難である。
本稿では,学習内容から知識コンポーネントを自動的に抽出する手法を提案する。
5つのドメインの知識トレースベンチマークに対して総合的に評価することで、このアプローチを検証する。
自動抽出された知識コンポーネントは,人間タグ付きラベルを効果的に置き換え,限られたデータシナリオにおける知的学習システムの強化,教育環境における説明可能な評価の達成,自動評価の基盤となることなどが示唆された。
関連論文リスト
- KBAlign: Efficient Self Adaptation on Specific Knowledge Bases [75.78948575957081]
大規模言語モデル(LLM)は通常、知識材料を瞬時に活用するために、検索強化世代に依存している。
本稿では,知識ベースを含む下流タスクへの効率的な適応を目的としたKBAlignを提案する。
提案手法は,Q&Aペアやリビジョン提案などの自己注釈付きデータを用いて反復学習を行い,モデルが知識内容を効率的に把握できるようにする。
論文 参考訳(メタデータ) (2024-11-22T08:21:03Z) - User-centric evaluation of explainability of AI with and for humans: a comprehensive empirical study [5.775094401949666]
この研究はHuman-Centered Artificial Intelligence (HCAI)にある。
一般的に使用されるeXplainable Artificial Intelligence (XAI)アルゴリズムのユーザ中心評価の結果に焦点を当てている。
論文 参考訳(メタデータ) (2024-10-21T12:32:39Z) - Knowledge Tagging with Large Language Model based Multi-Agent System [17.53518487546791]
本稿では,従来のアルゴリズムの限界に対処するマルチエージェントシステムについて検討する。
我々は,従来の手法が抱えていた課題を克服する上で,LLMベースのマルチエージェントシステムの可能性を強調した。
論文 参考訳(メタデータ) (2024-09-12T21:39:01Z) - Knowledge Tagging System on Math Questions via LLMs with Flexible Demonstration Retriever [48.5585921817745]
大きな言語モデル(LLM)は知識タグ付けタスクを自動化するために使われる。
算数問題における知識タグ付けタスクに対するゼロショットと少数ショットの結果の強い性能を示す。
強化学習に基づくデモレトリバーの提案により,異なるサイズのLLMの潜在能力を活用できた。
論文 参考訳(メタデータ) (2024-06-19T23:30:01Z) - Private Knowledge Sharing in Distributed Learning: A Survey [50.51431815732716]
人工知能の台頭は多くの産業に革命をもたらし、社会の働き方を変えた。
異なるエンティティが分散または所有する学習プロセスにおいて、情報を活用することが不可欠である。
現代のデータ駆動サービスは、分散知識エンティティを結果に統合するために開発されています。
論文 参考訳(メタデータ) (2024-02-08T07:18:23Z) - Knowledge Tracing Challenge: Optimal Activity Sequencing for Students [0.9814642627359286]
知識追跡(きゅうがく、英: Knowledge Trace)は、個々の学習者による知識の獲得を評価・追跡する教育において用いられる手法である。
我々は,AAAI2023 Global Knowledge Tracing Challengeの一環として,新たにリリースされたデータセット上に2つの知識追跡アルゴリズムを実装した結果を示す。
論文 参考訳(メタデータ) (2023-11-13T16:28:34Z) - UNTER: A Unified Knowledge Interface for Enhancing Pre-trained Language
Models [100.4659557650775]
構造化知識と非構造化知識の両方を活用する統一的な視点を提供するために、統一知識インターフェイスUNTERを提案する。
どちらの形態の知識も注入され、UNTERは一連の知識駆動NLPタスクの継続的な改善を得る。
論文 参考訳(メタデータ) (2023-05-02T17:33:28Z) - Informed Learning by Wide Neural Networks: Convergence, Generalization
and Sampling Complexity [27.84415856657607]
ドメイン知識が情報学習のパフォーマンスにどのような影響を及ぼすか、なぜ研究する。
本稿では,知識の利点をうまく活用し,ラベルと知識の不完全性のバランスをとるための,汎用的な情報教育目標を提案する。
論文 参考訳(メタデータ) (2022-07-02T06:28:25Z) - Towards a Universal Continuous Knowledge Base [49.95342223987143]
複数のニューラルネットワークからインポートされた知識を格納できる継続的知識基盤を構築する方法を提案する。
テキスト分類実験は有望な結果を示す。
我々は複数のモデルから知識ベースに知識をインポートし、そこから融合した知識を単一のモデルにエクスポートする。
論文 参考訳(メタデータ) (2020-12-25T12:27:44Z) - Learning From Multiple Experts: Self-paced Knowledge Distillation for
Long-tailed Classification [106.08067870620218]
我々は,LFME(Learning From Multiple Experts)と呼ばれる自己評価型知識蒸留フレームワークを提案する。
提案するLFMEフレームワークは,複数の'Experts'からの知識を集約して,統一された学生モデルを学ぶ。
提案手法は,最先端の手法に比べて優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2020-01-06T12:57:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。