論文の概要: Ensemble Kalman Diffusion Guidance: A Derivative-free Method for Inverse Problems
- arxiv url: http://arxiv.org/abs/2409.20175v2
- Date: Tue, 03 Jun 2025 03:42:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-05 01:42:08.901758
- Title: Ensemble Kalman Diffusion Guidance: A Derivative-free Method for Inverse Problems
- Title(参考訳): Ensemble Kalman Diffusion Guidance: 逆問題に対する導出的自由解法
- Authors: Hongkai Zheng, Wenda Chu, Austin Wang, Nikola Kovachki, Ricardo Baptista, Yisong Yue,
- Abstract要約: アンサンブルカルマン拡散誘導(Ensemble Kalman Diffusion Guidance, EnKG)は、逆問題の解法である。
本研究では,様々な逆問題に対する EnKG の実証的有効性について検討した。
ソースコードはhttps://github.com/devzhk/enkg-pytorch.comで公開しています。
- 参考スコア(独自算出の注目度): 21.95946380639509
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: When solving inverse problems, one increasingly popular approach is to use pre-trained diffusion models as plug-and-play priors. This framework can accommodate different forward models without re-training while preserving the generative capability of diffusion models. Despite their success in many imaging inverse problems, most existing methods rely on privileged information such as derivative, pseudo-inverse, or full knowledge about the forward model. This reliance poses a substantial limitation that restricts their use in a wide range of problems where such information is unavailable, such as in many scientific applications. We propose Ensemble Kalman Diffusion Guidance (EnKG), a derivative-free approach that can solve inverse problems by only accessing forward model evaluations and a pre-trained diffusion model prior. We study the empirical effectiveness of EnKG across various inverse problems, including scientific settings such as inferring fluid flows and astronomical objects, which are highly non-linear inverse problems that often only permit black-box access to the forward model. We open-source our code at https://github.com/devzhk/enkg-pytorch.
- Abstract(参考訳): 逆問題を解決する際には、プラグ・アンド・プレイの先行として事前学習した拡散モデルを使用することが一般的になっている。
このフレームワークは、拡散モデルの生成能力を保ちながら、再学習することなく、異なる前方モデルに対応できる。
多くのイメージング逆問題の成功にもかかわらず、既存のほとんどの手法は微分、擬似逆問題、フォワードモデルに関する完全な知識といった特権情報に依存している。
この依存は、多くの科学的応用のように、そのような情報が利用できない幅広い問題において、それらの使用を制限する重大な制限を生じさせる。
本研究では,前向きモデル評価と事前学習した拡散モデルにのみアクセスすることで,逆問題に対処できる微分自由化手法であるEnsemble Kalman Diffusion Guidance (EnKG)を提案する。
本研究では,様々な逆問題に対するEnKGの実証的有効性について検討する。例えば,流体の流れや天体を推定するといった科学的な設定は,しばしばブラックボックスがフォワードモデルにアクセスできるような非線形逆問題である。
ソースコードはhttps://github.com/devzhk/enkg-pytorch.comで公開しています。
関連論文リスト
- Unifying and extending Diffusion Models through PDEs for solving Inverse Problems [3.1225172236361165]
拡散モデルは、コンピュータビジョンと科学機械学習(SciML)に応用された強力な生成ツールとして登場した。
伝統的に、これらのモデルは変分推論、復調、統計信号処理、微分方程式の原理を用いて導出されてきた。
本研究では,線形偏微分方程式からアイデアを用いた拡散モデルを導出し,このアプローチにはいくつかの利点があることを示す。
論文 参考訳(メタデータ) (2025-04-10T04:07:36Z) - G2D2: Gradient-guided Discrete Diffusion for image inverse problem solving [55.185588994883226]
本稿では,従来の離散拡散に基づく画像生成モデルを活用することによって,線形逆問題に対処する新しい手法を提案する。
我々の知る限りでは、これは画像逆問題を解決するために離散拡散モデルに基づく先行手法を使う最初のアプローチである。
論文 参考訳(メタデータ) (2024-10-09T06:18:25Z) - Diffusion State-Guided Projected Gradient for Inverse Problems [82.24625224110099]
逆問題に対する拡散状態ガイド型射影勾配(DiffStateGrad)を提案する。
DiffStateGrad は拡散過程の中間状態の低ランク近似である部分空間に測定勾配を投影する。
DiffStateGradは、測定手順のステップサイズとノイズの選択によって拡散モデルのロバスト性を向上させる。
論文 参考訳(メタデータ) (2024-10-04T14:26:54Z) - A Survey on Diffusion Models for Inverse Problems [110.6628926886398]
本稿では, 事前学習した拡散モデルを用いて, さらなる学習を必要とせず, 逆問題の解法について概説する。
逆問題に対する潜伏拡散モデルの使用に伴う具体的な課題と潜在的な解決策について論じる。
論文 参考訳(メタデータ) (2024-09-30T17:34:01Z) - Amortizing intractable inference in diffusion models for vision, language, and control [89.65631572949702]
本稿では,p(mathbfx)$以前の拡散生成モデルとブラックボックス制約,あるいは関数$r(mathbfx)$からなるモデルにおいて,データ上の後部サンプルである $mathbfxsim prm post(mathbfx)propto p(mathbfx)r(mathbfx)$について検討する。
我々は,データフリー学習目標である相対軌道バランスの正しさを,サンプルから抽出した拡散モデルの訓練のために証明する。
論文 参考訳(メタデータ) (2024-05-31T16:18:46Z) - Learning Diffusion Priors from Observations by Expectation Maximization [6.224769485481242]
不完全および雑音のみから拡散モデルをトレーニングするための予測最大化アルゴリズムに基づく新しい手法を提案する。
提案手法は,非条件拡散モデルに対する改良された後続サンプリング方式の提案と動機付けである。
論文 参考訳(メタデータ) (2024-05-22T15:04:06Z) - Guided Diffusion from Self-Supervised Diffusion Features [49.78673164423208]
ガイダンスは拡散モデルにおいて重要な概念として機能するが、その効果は追加のデータアノテーションや事前学習の必要性によって制限されることが多い。
本稿では,拡散モデルからガイダンスを抽出するフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-14T11:19:11Z) - Training-free Linear Image Inverses via Flows [17.291903204982326]
本研究では,事前学習フローモデルを用いて,線形逆問題に対する学習自由度を求める手法を提案する。
提案手法では,高次元データセット上でのノイズの多い線形逆問題に対して,問題固有のチューニングは不要である。
論文 参考訳(メタデータ) (2023-09-25T22:13:16Z) - Solving Inverse Problems with Latent Diffusion Models via Hard Data Consistency [7.671153315762146]
画素空間におけるトレーニング拡散モデルは、データ集約的かつ計算的に要求される。
非常に低次元空間で動作する潜在拡散モデルは、これらの課題に対する解決策を提供する。
我々は,事前学習した潜在拡散モデルを用いて,一般的な逆問題を解決するアルゴリズムであるtextitReSampleを提案する。
論文 参考訳(メタデータ) (2023-07-16T18:42:01Z) - Eliminating Lipschitz Singularities in Diffusion Models [51.806899946775076]
拡散モデルは、時間ステップの零点付近で無限のリプシッツをしばしば表すことを示す。
これは、積分演算に依存する拡散過程の安定性と精度に脅威をもたらす。
我々はE-TSDMと呼ばれる新しい手法を提案し、これは0に近い拡散モデルのリプシッツを除去する。
論文 参考訳(メタデータ) (2023-06-20T03:05:28Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
逆タスクは、データ上の後続分布を推測するものとして定式化することができる。
しかし、拡散過程の非線形的かつ反復的な性質が後部を引き付けるため、拡散モデルではこれは困難である。
そこで我々は,真の後続分布を近似する設計手法を提案する。
論文 参考訳(メタデータ) (2023-05-07T23:00:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。