論文の概要: Unifying and extending Diffusion Models through PDEs for solving Inverse Problems
- arxiv url: http://arxiv.org/abs/2504.07437v1
- Date: Thu, 10 Apr 2025 04:07:36 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-11 12:22:19.840481
- Title: Unifying and extending Diffusion Models through PDEs for solving Inverse Problems
- Title(参考訳): 逆問題解決のためのPDEによる拡散モデルの統一と拡張
- Authors: Agnimitra Dasgupta, Alexsander Marciano da Cunha, Ali Fardisi, Mehrnegar Aminy, Brianna Binder, Bryan Shaddy, Assad A Oberai,
- Abstract要約: 拡散モデルは、コンピュータビジョンと科学機械学習(SciML)に応用された強力な生成ツールとして登場した。
伝統的に、これらのモデルは変分推論、復調、統計信号処理、微分方程式の原理を用いて導出されてきた。
本研究では,線形偏微分方程式からアイデアを用いた拡散モデルを導出し,このアプローチにはいくつかの利点があることを示す。
- 参考スコア(独自算出の注目度): 3.1225172236361165
- License:
- Abstract: Diffusion models have emerged as powerful generative tools with applications in computer vision and scientific machine learning (SciML), where they have been used to solve large-scale probabilistic inverse problems. Traditionally, these models have been derived using principles of variational inference, denoising, statistical signal processing, and stochastic differential equations. In contrast to the conventional presentation, in this study we derive diffusion models using ideas from linear partial differential equations and demonstrate that this approach has several benefits that include a constructive derivation of the forward and reverse processes, a unified derivation of multiple formulations and sampling strategies, and the discovery of a new class of models. We also apply the conditional version of these models to solving canonical conditional density estimation problems and challenging inverse problems. These problems help establish benchmarks for systematically quantifying the performance of different formulations and sampling strategies in this study, and for future studies. Finally, we identify and implement a mechanism through which a single diffusion model can be applied to measurements obtained from multiple measurement operators. Taken together, the contents of this manuscript provide a new understanding and several new directions in the application of diffusion models to solving physics-based inverse problems.
- Abstract(参考訳): 拡散モデルは、コンピュータビジョンと科学機械学習(SciML)に応用された強力な生成ツールとして登場し、大規模な確率的逆問題の解決に使用されている。
伝統的に、これらのモデルは変分推論、復調、統計信号処理、確率微分方程式の原理を用いて導出されてきた。
従来のプレゼンテーションとは対照的に,線形偏微分方程式のアイデアを用いた拡散モデルを導出し,この手法が前方および逆過程の構成的導出,複数の定式化とサンプリング戦略の統一導出,新しいモデルの発見など,いくつかの利点を持つことを示した。
また、これらのモデルの条件付きバージョンを標準条件付き密度推定問題と逆問題に応用する。
これらの問題は、様々な定式化とサンプリング戦略の性能を体系的に定量化するためのベンチマークを確立するのに役立ち、将来の研究にも役立ちます。
最後に,複数の測定演算子から得られた測定に単一拡散モデルを適用する機構を同定し,実装する。
本書の内容は、物理に基づく逆問題の解法への拡散モデルの適用において、新たな理解と新たな方向性を提供するものである。
関連論文リスト
- A Survey on Diffusion Models for Inverse Problems [110.6628926886398]
本稿では, 事前学習した拡散モデルを用いて, さらなる学習を必要とせず, 逆問題の解法について概説する。
逆問題に対する潜伏拡散モデルの使用に伴う具体的な課題と潜在的な解決策について論じる。
論文 参考訳(メタデータ) (2024-09-30T17:34:01Z) - Conditional score-based diffusion models for solving inverse problems in mechanics [6.319616423658121]
条件付きスコアベース拡散モデルを用いてベイズ推定を行う枠組みを提案する。
条件付きスコアベース拡散モデルは条件分布のスコア関数を近似する生成モデルである。
メカニクスにおける高次元逆問題に対して提案手法の有効性を示す。
論文 参考訳(メタデータ) (2024-06-19T02:09:15Z) - Diffeomorphic Measure Matching with Kernels for Generative Modeling [1.2058600649065618]
本稿では、常微分方程式(ODE)と再生成ケルネルヒルベルト空間(RKHS)を用いて、最小分散生成モデリングおよびサンプリングに向けた確率測度を伝達するための枠組みを提案する。
提案手法の理論的解析を行い,モデルの複雑さ,トレーニングセット内のサンプル数,モデルの誤識別という観点から,事前誤差境界を与える。
論文 参考訳(メタデータ) (2024-02-12T21:44:20Z) - A Geometric Perspective on Diffusion Models [57.27857591493788]
本稿では,人気のある分散拡散型SDEのODEに基づくサンプリングについて検討する。
我々は、最適なODEベースのサンプリングと古典的な平均シフト(モード探索)アルゴリズムの理論的関係を確立する。
論文 参考訳(メタデータ) (2023-05-31T15:33:16Z) - A Variational Perspective on Solving Inverse Problems with Diffusion
Models [101.831766524264]
逆タスクは、データ上の後続分布を推測するものとして定式化することができる。
しかし、拡散過程の非線形的かつ反復的な性質が後部を引き付けるため、拡散モデルではこれは困難である。
そこで我々は,真の後続分布を近似する設計手法を提案する。
論文 参考訳(メタデータ) (2023-05-07T23:00:47Z) - Reflected Diffusion Models [93.26107023470979]
本稿では,データのサポートに基づいて進化する反射微分方程式を逆転する反射拡散モデルを提案する。
提案手法は,一般化されたスコアマッチング損失を用いてスコア関数を学習し,標準拡散モデルの主要成分を拡張する。
論文 参考訳(メタデータ) (2023-04-10T17:54:38Z) - Reduce, Reuse, Recycle: Compositional Generation with Energy-Based Diffusion Models and MCMC [102.64648158034568]
拡散モデルは、多くの領域において、生成モデリングの一般的なアプローチとなっている。
本稿では,新しい構成演算子の利用を可能にする拡散モデルのエネルギーベースパラメータ化を提案する。
これらのサンプルは、幅広い問題にまたがって構成生成の顕著な改善につながっている。
論文 参考訳(メタデータ) (2023-02-22T18:48:46Z) - Approximate Latent Force Model Inference [1.3927943269211591]
潜在力モデルは、動的システムにおける推論のための純粋にデータ駆動ツールの解釈可能な代替手段を提供する。
ニューラルネットワークのアプローチは、モデルを数千のインスタンスにスケールし、高速で分散的な計算を可能にします。
論文 参考訳(メタデータ) (2021-09-24T09:55:00Z) - Low-rank statistical finite elements for scalable model-data synthesis [0.8602553195689513]
statFEMは、支配方程式に強制を埋め込むことによって、事前モデルの誤特定を認める。
この方法は、観測されたデータ生成過程を最小限の情報損失で再構築する。
本稿では、下層の密度共分散行列の低ランク近似を埋め込むことで、このハードルを克服する。
論文 参考訳(メタデータ) (2021-09-10T09:51:43Z) - Accounting for Unobserved Confounding in Domain Generalization [107.0464488046289]
本稿では,データセットの組み合わせから頑健で一般化可能な予測モデルを学習する際の問題点について検討する。
堅牢なモデルを学ぶことの課題の一部は、保存されていない共同設立者の影響にある。
異なるモダリティの医療データに対するアプローチの実証的性能を実証する。
論文 参考訳(メタデータ) (2020-07-21T08:18:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。