論文の概要: Forecasting Disease Progression with Parallel Hyperplanes in Longitudinal Retinal OCT
- arxiv url: http://arxiv.org/abs/2409.20195v1
- Date: Mon, 30 Sep 2024 11:11:35 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-02 13:07:12.703707
- Title: Forecasting Disease Progression with Parallel Hyperplanes in Longitudinal Retinal OCT
- Title(参考訳): 縦隔網膜OCTにおける平行超平面による予測疾患の進展
- Authors: Arunava Chakravarty, Taha Emre, Dmitrii Lachinov, Antoine Rivail, Hendrik Scholl, Lars Fritsche, Sobha Sivaprasad, Daniel Rueckert, Andrew Lotery, Ursula Schmidt-Erfurth, Hrvoje Bogunović,
- Abstract要約: 本稿では,現在スキャンされているリスクスコアから,時間と変換の逆関係と,時間間隔$t$での変換確率を共同で予測する手法を提案する。
さらに,オブジェクト内画像ペアによる教師なしの損失を発生させ,リスクスコアが時間とともに増加し,将来的なコンバージョン予測がAMDステージ予測と一致していることを確認する。
- 参考スコア(独自算出の注目度): 8.671969912468393
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Predicting future disease progression risk from medical images is challenging due to patient heterogeneity, and subtle or unknown imaging biomarkers. Moreover, deep learning (DL) methods for survival analysis are susceptible to image domain shifts across scanners. We tackle these issues in the task of predicting late dry Age-related Macular Degeneration (dAMD) onset from retinal OCT scans. We propose a novel DL method for survival prediction to jointly predict from the current scan a risk score, inversely related to time-to-conversion, and the probability of conversion within a time interval $t$. It uses a family of parallel hyperplanes generated by parameterizing the bias term as a function of $t$. In addition, we develop unsupervised losses based on intra-subject image pairs to ensure that risk scores increase over time and that future conversion predictions are consistent with AMD stage prediction using actual scans of future visits. Such losses enable data-efficient fine-tuning of the trained model on new unlabeled datasets acquired with a different scanner. Extensive evaluation on two large datasets acquired with different scanners resulted in a mean AUROCs of 0.82 for Dataset-1 and 0.83 for Dataset-2, across prediction intervals of 6,12 and 24 months.
- Abstract(参考訳): 医用画像から将来の疾患進行リスクを予測することは、患者の異質性、微妙または未知の画像バイオマーカーにより困難である。
さらに、生存分析のためのディープラーニング(DL)手法は、スキャナー間の画像領域シフトの影響を受けやすい。
我々は、網膜CTスキャンによる乾燥後期黄斑変性(dAMD)の発症を予測するための課題として、これらの課題に取り組む。
本稿では,現在スキャンされているリスクスコアから,時間と変換の逆関係と,時間間隔$t$での変換確率を共同で予測する新たなDL手法を提案する。
これは、バイアス項を$t$の関数としてパラメータ化することによって生成される平行超平面の族を用いる。
さらに,オブジェクト内画像ペアによる教師なしの損失を発生させ,リスクスコアが時間とともに増加し,将来的なコンバージョン予測がAMDステージ予測と一致していることを確認する。
このような損失は、異なるスキャナーで取得した新しいラベル付きデータセット上で、トレーニングされたモデルのデータ効率の細かい調整を可能にする。
異なるスキャナーで得られた2つの大きなデータセットの大規模な評価の結果、平均AUROCはDataset-1で0.82、Dataset-2で0.83、予測間隔は6,12,24ヶ月となった。
関連論文リスト
- tdCoxSNN: Time-Dependent Cox Survival Neural Network for Continuous-time
Dynamic Prediction [19.38247205641199]
本研究では,時間依存型Coxサバイバルニューラルネットワーク(tdCoxSNN)を提案する。
提案手法と共同モデリングおよびランドマーク手法を広範囲なシミュレーションにより評価・比較する。
論文 参考訳(メタデータ) (2023-07-12T03:03:40Z) - Concurrent ischemic lesion age estimation and segmentation of CT brain
using a Transformer-based network [8.80381582892208]
本稿では,脳虚血病変の同時分節と年齢推定に最適化された,エンドツーエンドのマルチタスク・トランスフォーマー・ネットワークを提案する。
従来手法の0.858と比較すると, 病変年齢を4.5時間に分類するための曲線(AUC)が0.933未満の領域で, 有望な性能が得られる。
論文 参考訳(メタデータ) (2023-06-21T13:00:49Z) - A Comparison of Self-Supervised Pretraining Approaches for Predicting
Disease Risk from Chest Radiograph Images [3.5880535198436156]
胸部X線画像を用いた半教師付き学習と自己指導型学習を比較し,死亡リスクを予測する。
半教師付きオートエンコーダは,内部および外部の検証において,コントラストや伝達学習よりも優れることがわかった。
論文 参考訳(メタデータ) (2023-06-15T08:48:14Z) - PrepNet: A Convolutional Auto-Encoder to Homogenize CT Scans for
Cross-Dataset Medical Image Analysis [0.22485007639406518]
新型コロナウイルスの診断はPCR検査で効率的に行えるようになったが、このユースケースは、データの多様性を克服する方法論の必要性を実証するものだ。
本稿では,CTスキャンに最小限の変更を同時に導入しながら,イメージング技術によって引き起こされる差を解消することを目的とした,新しい生成手法を提案する。
論文 参考訳(メタデータ) (2022-08-19T15:49:47Z) - Building Brains: Subvolume Recombination for Data Augmentation in Large
Vessel Occlusion Detection [56.67577446132946]
この戦略をデータから学ぶためには、標準的なディープラーニングベースのモデルに対して、大規模なトレーニングデータセットが必要である。
そこで本研究では, 異なる患者から血管木セグメントを組換えることで, 人工的なトレーニングサンプルを生成する方法を提案する。
拡張スキームに則って,タスク固有の入力を入力した3D-DenseNetを用いて,半球間の比較を行う。
論文 参考訳(メタデータ) (2022-05-05T10:31:57Z) - SurvLatent ODE : A Neural ODE based time-to-event model with competing
risks for longitudinal data improves cancer-associated Deep Vein Thrombosis
(DVT) prediction [68.8204255655161]
本稿では,不規則なサンプルデータの下で潜在表現をパラメータ化する生成時間対イベントモデルSurvLatent ODEを提案する。
そこで,本モデルでは,事象特異的ハザード関数の形状を指定せずに,複数の競合イベントの生存時間を柔軟に推定する。
SurvLatent ODEは、DVTリスクグループを成層化するために、現在の臨床標準であるKhorana Riskスコアより優れている。
論文 参考訳(メタデータ) (2022-04-20T17:28:08Z) - Pseudo-domains in imaging data improve prediction of future disease
status in multi-center studies [57.712855968194305]
本研究では,多数の異なるスキャンサイトと,各サイト毎のサンプル数に対処可能な予測手法を提案する。
以上の結果より,初診後48週,12週間の肝疾患経過観察の結果から,聴力低下の予測精度が向上した。
論文 参考訳(メタデータ) (2021-11-15T09:40:54Z) - CyTran: A Cycle-Consistent Transformer with Multi-Level Consistency for
Non-Contrast to Contrast CT Translation [56.622832383316215]
コントラストCTを非コントラストCTに変換する手法を提案する。
提案手法は、CyTranを略して、サイクル一貫性のある生成逆転変換器に基づいている。
実験の結果、CyTranは競合するすべての手法より優れています。
論文 参考訳(メタデータ) (2021-10-12T23:25:03Z) - Dual-Consistency Semi-Supervised Learning with Uncertainty
Quantification for COVID-19 Lesion Segmentation from CT Images [49.1861463923357]
CT画像を用いた半監視型COVID-19病変分割のための不確実性誘導型二重一貫性学習ネットワーク(UDC-Net)を提案する。
提案した UDC-Net は,Dice の完全教師方式を 6.3% 向上させ,他の競合的半監督方式を有意なマージンで上回っている。
論文 参考訳(メタデータ) (2021-04-07T16:23:35Z) - DeepRite: Deep Recurrent Inverse TreatmEnt Weighting for Adjusting
Time-varying Confounding in Modern Longitudinal Observational Data [68.29870617697532]
時系列データにおける時間変化の相違に対するDeep Recurrent Inverse TreatmEnt重み付け(DeepRite)を提案する。
DeepRiteは、合成データから基底的真理を復元し、実際のデータから偏りのない処理効果を推定する。
論文 参考訳(メタデータ) (2020-10-28T15:05:08Z) - Development and Validation of a Novel Prognostic Model for Predicting
AMD Progression Using Longitudinal Fundus Images [6.258161719849178]
本研究では,不均一な時間間隔の縦画像データを用いて,疾患の進行を予測できる新しい深層学習手法を提案する。
年齢関連黄斑変性症(AMD)を呈する4903眼における眼底画像の経時的データセットについて検討した。
本手法では, 0.878の感度, 0.887の特異性, 0.950の受信機動作特性下での面積を測定できる。
論文 参考訳(メタデータ) (2020-07-10T00:33:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。