論文の概要: Assessing interaction recovery of predicted protein-ligand poses
- arxiv url: http://arxiv.org/abs/2409.20227v1
- Date: Mon, 30 Sep 2024 12:06:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-02 12:56:53.661121
- Title: Assessing interaction recovery of predicted protein-ligand poses
- Title(参考訳): 予測されたタンパク質リガンドポーズの相互作用回復の評価
- Authors: David Errington, Constantin Schneider, Cédric Bouysset, Frédéric A. Dreyer,
- Abstract要約: タンパク質-リガンド相互作用指紋を無視するとモデル性能が過大評価される可能性が示唆された。
本研究では,タンパク質-リガンド相互作用指紋の無視がモデル性能の過大評価につながることを示す。
- 参考スコア(独自算出の注目度): 0.39331876802505306
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The field of protein-ligand pose prediction has seen significant advances in recent years, with machine learning-based methods now being commonly used in lieu of classical docking methods or even to predict all-atom protein-ligand complex structures. Most contemporary studies focus on the accuracy and physical plausibility of ligand placement to determine pose quality, often neglecting a direct assessment of the interactions observed with the protein. In this work, we demonstrate that ignoring protein-ligand interaction fingerprints can lead to overestimation of model performance, most notably in recent protein-ligand cofolding models which often fail to recapitulate key interactions.
- Abstract(参考訳): タンパク質-リガンドのポーズ予測の分野は近年顕著な進歩を遂げており、機械学習に基づく手法は古典的なドッキング法の代わりに、あるいは全原子タンパク質-リガンド複合体構造を予測するために広く用いられている。
現代のほとんどの研究では、リガンド配置の正確さと物理的妥当性に焦点が当てられ、しばしばタンパク質と観察される相互作用の直接的な評価を無視している。
本研究では,タンパク質-リガンド相互作用指紋を無視するとモデル性能が過大評価されることを示す。
関連論文リスト
- PSC-CPI: Multi-Scale Protein Sequence-Structure Contrasting for
Efficient and Generalizable Compound-Protein Interaction Prediction [63.50967073653953]
化合物-タンパク質相互作用予測は、合理的な薬物発見のための化合物-タンパク質相互作用のパターンと強度を予測することを目的としている。
既存のディープラーニングベースの手法では、タンパク質配列や構造が単一のモダリティしか利用していない。
CPI予測のためのマルチスケールタンパク質配列構造コントラストフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-13T03:51:10Z) - Efficiently Predicting Protein Stability Changes Upon Single-point
Mutation with Large Language Models [51.57843608615827]
タンパク質の熱安定性を正確に予測する能力は、様々なサブフィールドや生化学への応用において重要である。
タンパク質配列と構造的特徴を統合したESMによる効率的なアプローチを導入し, 単一点突然変異によるタンパク質の熱安定性変化を予測する。
論文 参考訳(メタデータ) (2023-12-07T03:25:49Z) - Protein-ligand binding representation learning from fine-grained
interactions [29.965890962846093]
本稿では,タンパク質-リガンド結合表現を自己教師付き学習方式で学習することを提案する。
この自己教師付き学習問題は、決定的結合複素構造の予測として定式化される。
様々なバインディングタスクに対して,本手法の優位性を示す実験を行った。
論文 参考訳(メタデータ) (2023-11-09T01:33:09Z) - Improved K-mer Based Prediction of Protein-Protein Interactions With
Chaos Game Representation, Deep Learning and Reduced Representation Bias [0.0]
本稿では,対話データセットからユニークなペアを抽出し,非バイアス付き機械学習のための非冗長なペアデータを生成する手法を提案する。
我々は,タンパク質のコード遺伝子のカオスゲーム表現から相互作用を学習し,予測できる畳み込みニューラルネットワークモデルを開発した。
論文 参考訳(メタデータ) (2023-10-23T10:02:23Z) - Growing ecosystem of deep learning methods for modeling
protein$\unicode{x2013}$protein interactions [0.0]
本稿では,タンパク質相互作用をモデル化する深層学習手法のエコシステムを論じる。
新たな相互作用を発見し、物理的なメカニズムを調節し、エンジニアのバインダーがそれらの機能を解き放つ機会がある。
論文 参考訳(メタデータ) (2023-10-10T15:53:27Z) - Multi-level Protein Representation Learning for Blind Mutational Effect
Prediction [5.207307163958806]
本稿では,タンパク質構造解析のためのシーケンシャルおよび幾何学的アナライザをカスケードする,新しい事前学習フレームワークを提案する。
野生型タンパク質の自然選択をシミュレートすることにより、所望の形質に対する突然変異方向を誘導する。
提案手法は,多種多様な効果予測タスクに対して,パブリックデータベースと2つの新しいデータベースを用いて評価する。
論文 参考訳(メタデータ) (2023-06-08T03:00:50Z) - Integration of Pre-trained Protein Language Models into Geometric Deep
Learning Networks [68.90692290665648]
我々は、タンパク質言語モデルから学んだ知識を、いくつかの最先端の幾何学的ネットワークに統合する。
以上の結果から,ベースラインを20%上回る総合的な改善が見られた。
強い証拠は、タンパク質言語モデルの知識を取り入れることで、幾何学的ネットワークの能力が著しく向上することを示している。
論文 参考訳(メタデータ) (2022-12-07T04:04:04Z) - State-specific protein-ligand complex structure prediction with a
multi-scale deep generative model [68.28309982199902]
タンパク質-リガンド複合体構造を直接予測できる計算手法であるNeuralPLexerを提案する。
我々の研究は、データ駆動型アプローチがタンパク質と小分子の構造的協調性を捉え、酵素や薬物分子などの設計を加速させる可能性を示唆している。
論文 参考訳(メタデータ) (2022-09-30T01:46:38Z) - Structure-aware Protein Self-supervised Learning [50.04673179816619]
本稿では,タンパク質の構造情報を取得するための構造認識型タンパク質自己教師学習法を提案する。
特に、タンパク質構造情報を保存するために、よく設計されたグラフニューラルネットワーク(GNN)モデルを事前訓練する。
タンパク質言語モデルにおける逐次情報と特別に設計されたGNNモデルにおける構造情報との関係を,新しい擬似二段階最適化手法を用いて同定する。
論文 参考訳(メタデータ) (2022-04-06T02:18:41Z) - Learning Unknown from Correlations: Graph Neural Network for
Inter-novel-protein Interaction Prediction [7.860159889216291]
既存のメソッドは、見えないデータセットでテストすると、パフォーマンスが大幅に低下します。
本稿では,タンパク質間相互作用予測のためのグラフニューラルネットワーク(GNN-PPI)を提案する。
論文 参考訳(メタデータ) (2021-05-14T08:42:55Z) - Explainable Deep Relational Networks for Predicting Compound-Protein
Affinities and Contacts [80.69440684790925]
Deep Relationsは物理にインスパイアされた、本質的に説明可能なアーキテクチャを持つディープリレーショナルネットワークである。
それは最先端技術に対する優れた解釈可能性を示している。
接触予測 9.5, 16.9, 19.3, 5.7 倍の AUPRC をテスト用、複合ユニク、タンパク質ユニク、両ユニクセットで強化する。
論文 参考訳(メタデータ) (2019-12-29T00:14:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。