Solution for OOD-CV Workshop SSB Challenge 2024 (Open-Set Recognition Track)
- URL: http://arxiv.org/abs/2409.20277v1
- Date: Mon, 30 Sep 2024 13:28:14 GMT
- Title: Solution for OOD-CV Workshop SSB Challenge 2024 (Open-Set Recognition Track)
- Authors: Mingxu Feng, Dian Chao, Peng Zheng, Yang Yang,
- Abstract summary: The challenge required identifying whether a test sample belonged to the semantic classes of a classifier's training set.
We proposed a hybrid approach, experimenting with the fusion of various post-hoc OOD detection techniques and different Test-Time Augmentation strategies.
Our best-performing method combined Test-Time Augmentation with the post-hoc OOD techniques, achieving a strong balance between AUROC and FPR95 scores.
- Score: 6.998958192483059
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This report provides a detailed description of the method we explored and proposed in the OSR Challenge at the OOD-CV Workshop during ECCV 2024. The challenge required identifying whether a test sample belonged to the semantic classes of a classifier's training set, a task known as open-set recognition (OSR). Using the Semantic Shift Benchmark (SSB) for evaluation, we focused on ImageNet1k as the in-distribution (ID) dataset and a subset of ImageNet21k as the out-of-distribution (OOD) dataset.To address this, we proposed a hybrid approach, experimenting with the fusion of various post-hoc OOD detection techniques and different Test-Time Augmentation (TTA) strategies. Additionally, we evaluated the impact of several base models on the final performance. Our best-performing method combined Test-Time Augmentation with the post-hoc OOD techniques, achieving a strong balance between AUROC and FPR95 scores. Our approach resulted in AUROC: 79.77 (ranked 5th) and FPR95: 61.44 (ranked 2nd), securing second place in the overall competition.
Related papers
- Margin-bounded Confidence Scores for Out-of-Distribution Detection [2.373572816573706]
We propose a novel method called Margin bounded Confidence Scores (MaCS) to address the nontrivial OOD detection problem.
MaCS enlarges the disparity between ID and OOD scores, which in turn makes the decision boundary more compact.
Experiments on various benchmark datasets for image classification tasks demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2024-09-22T05:40:25Z) - Dissecting Out-of-Distribution Detection and Open-Set Recognition: A Critical Analysis of Methods and Benchmarks [17.520137576423593]
We aim to provide a consolidated view of the two largest sub-fields within the community: out-of-distribution (OOD) detection and open-set recognition (OSR)
We perform rigorous cross-evaluation between state-of-the-art methods in the OOD detection and OSR settings and identify a strong correlation between the performances of methods for them.
We propose a new, large-scale benchmark setting which we suggest better disentangles the problem tackled by OOD detection and OSR.
arXiv Detail & Related papers (2024-08-29T17:55:07Z) - Representation Norm Amplification for Out-of-Distribution Detection in Long-Tail Learning [10.696635172502141]
We introduce our method, called textitRepresentation Norm Amplification (RNA), which solves the problem of detecting out-of-distribution samples.
Experiments show that RNA achieves superior performance in both OOD detection and classification compared to the state-of-the-art methods.
arXiv Detail & Related papers (2024-08-20T09:27:07Z) - SeTAR: Out-of-Distribution Detection with Selective Low-Rank Approximation [5.590633742488972]
Out-of-distribution (OOD) detection is crucial for the safe deployment of neural networks.
We propose SeTAR, a training-free OOD detection method.
SeTAR enhances OOD detection via post-hoc modification of the model's weight matrices using a simple greedy search algorithm.
Our work offers a scalable, efficient solution for OOD detection, setting a new state-of-the-art in this area.
arXiv Detail & Related papers (2024-06-18T13:55:13Z) - Rethinking the Evaluation of Out-of-Distribution Detection: A Sorites Paradox [70.57120710151105]
Most existing out-of-distribution (OOD) detection benchmarks classify samples with novel labels as the OOD data.
Some marginal OOD samples actually have close semantic contents to the in-distribution (ID) sample, which makes determining the OOD sample a Sorites Paradox.
We construct a benchmark named Incremental Shift OOD (IS-OOD) to address the issue.
arXiv Detail & Related papers (2024-06-14T09:27:56Z) - MOODv2: Masked Image Modeling for Out-of-Distribution Detection [57.17163962383442]
This study explores distinct pretraining tasks and employing various OOD score functions.
Our framework, MOODv2, impressively enhances 14.30% AUROC to 95.68% on ImageNet and achieves 99.98% on CIFAR-10.
arXiv Detail & Related papers (2024-01-05T02:57:58Z) - Model-free Test Time Adaptation for Out-Of-Distribution Detection [62.49795078366206]
We propose a Non-Parametric Test Time textbfAdaptation framework for textbfDistribution textbfDetection (abbr)
abbr utilizes online test samples for model adaptation during testing, enhancing adaptability to changing data distributions.
We demonstrate the effectiveness of abbr through comprehensive experiments on multiple OOD detection benchmarks.
arXiv Detail & Related papers (2023-11-28T02:00:47Z) - Distilling the Unknown to Unveil Certainty [66.29929319664167]
Out-of-distribution (OOD) detection is essential in identifying test samples that deviate from the in-distribution (ID) data upon which a standard network is trained.
This paper introduces OOD knowledge distillation, a pioneering learning framework applicable whether or not training ID data is available.
arXiv Detail & Related papers (2023-11-14T08:05:02Z) - Conformer-based Hybrid ASR System for Switchboard Dataset [99.88988282353206]
We present and evaluate a competitive conformer-based hybrid model training recipe.
We study different training aspects and methods to improve word-error-rate as well as to increase training speed.
We conduct experiments on Switchboard 300h dataset and our conformer-based hybrid model achieves competitive results.
arXiv Detail & Related papers (2021-11-05T12:03:18Z) - Trash to Treasure: Harvesting OOD Data with Cross-Modal Matching for
Open-Set Semi-Supervised Learning [101.28281124670647]
Open-set semi-supervised learning (open-set SSL) investigates a challenging but practical scenario where out-of-distribution (OOD) samples are contained in the unlabeled data.
We propose a novel training mechanism that could effectively exploit the presence of OOD data for enhanced feature learning.
Our approach substantially lifts the performance on open-set SSL and outperforms the state-of-the-art by a large margin.
arXiv Detail & Related papers (2021-08-12T09:14:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.