論文の概要: Enhancing GANs with Contrastive Learning-Based Multistage Progressive Finetuning SNN and RL-Based External Optimization
- arxiv url: http://arxiv.org/abs/2409.20340v2
- Date: Tue, 1 Oct 2024 14:14:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-02 19:42:09.204167
- Title: Enhancing GANs with Contrastive Learning-Based Multistage Progressive Finetuning SNN and RL-Based External Optimization
- Title(参考訳): コントラスト学習に基づく多段階プログレッシブファインタニングSNNとRLに基づく外部最適化によるGANの強化
- Authors: Osama Mustafa,
- Abstract要約: がん研究、特に早期診断、症例理解、治療戦略設計における深い学習。
生成AI、特にGAN(Generative Adversarial Networks)が主要なソリューションとして登場した。
GANは、組織学的データに固有の、いくつかの課題に直面している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The application of deep learning in cancer research, particularly in early diagnosis, case understanding, and treatment strategy design, emphasizes the need for high-quality data. Generative AI, especially Generative Adversarial Networks (GANs), has emerged as a leading solution to challenges like class imbalance, robust learning, and model training, while addressing issues stemming from patient privacy and the scarcity of real data. Despite their promise, GANs face several challenges, both inherent and specific to histopathology data. Inherent issues include training imbalance, mode collapse, linear learning from insufficient discriminator feedback, and hard boundary convergence due to stringent feedback. Histopathology data presents a unique challenge with its complex representation, high spatial resolution, and multiscale features. To address these challenges, we propose a framework consisting of two components. First, we introduce a contrastive learning-based Multistage Progressive Finetuning Siamese Neural Network (MFT-SNN) for assessing the similarity between histopathology patches. Second, we implement a Reinforcement Learning-based External Optimizer (RL-EO) within the GAN training loop, serving as a reward signal generator. The modified discriminator loss function incorporates a weighted reward, guiding the GAN to maximize this reward while minimizing loss. This approach offers an external optimization guide to the discriminator, preventing generator overfitting and ensuring smooth convergence. Our proposed solution has been benchmarked against state-of-the-art (SOTA) GANs and a Denoising Diffusion Probabilistic model, outperforming previous SOTA across various metrics, including FID score, KID score, Perceptual Path Length, and downstream classification tasks.
- Abstract(参考訳): がん研究、特に早期診断、症例理解、治療戦略設計におけるディープラーニングの応用は、高品質なデータの必要性を強調している。
生成AI、特にGAN(Generative Adversarial Networks)は、患者のプライバシと実際のデータの不足に起因する問題に対処しながら、クラス不均衡、堅牢な学習、モデルトレーニングといった課題に対する主要なソリューションとして登場した。
彼らの約束にもかかわらず、GANは、組織学的データに固有の、いくつかの課題に直面している。
原因となる問題としては、トレーニングの不均衡、モード崩壊、差別化の不十分なフィードバックからの線形学習、厳密なフィードバックによるハードバウンダリ収束などがある。
病理組織学的データは、その複雑な表現、高空間分解能、マルチスケールの特徴でユニークな課題を呈している。
これらの課題に対処するため、我々は2つのコンポーネントからなるフレームワークを提案する。
まず,MFT-SNN(Multi stage Progressive Finetuning Siamese Neural Network)を導入し,病理組織学的パッチの類似性を評価する。
第2に、GANトレーニングループ内に強化学習に基づく外部最適化器(RL-EO)を実装し、報酬信号生成装置として機能する。
改良された判別器損失関数は、重み付けされた報酬を取り入れ、損失を最小化しつつ、この報酬を最大化するためにGANを誘導する。
このアプローチは、ディスクリミネータに対する外部最適化ガイドを提供し、ジェネレータオーバーフィットを防止し、スムーズな収束を保証する。
提案手法は、FIDスコア、KIDスコア、知覚パス長、下流分類タスクなど、様々な指標において、従来のSOTAよりも優れている。
関連論文リスト
- Feature Attenuation of Defective Representation Can Resolve Incomplete Masking on Anomaly Detection [1.0358639819750703]
教師なし異常検出(UAD)研究では、計算効率が高くスケーラブルなソリューションを開発する必要がある。
再建・塗り替えのアプローチを再考し、強みと弱みを分析して改善する。
異常再構成の特徴情報を減衰させる2つの層のみを用いるFADeR(Feature Attenuation of Defective Representation)を提案する。
論文 参考訳(メタデータ) (2024-07-05T15:44:53Z) - FaFCNN: A General Disease Classification Framework Based on Feature
Fusion Neural Networks [4.097623533226476]
本稿では,機能認識型統合相関ニューラルネットワーク (FaFCNN) を提案する。
実験結果から,事前学習による強化特徴を用いた訓練により,無作為森林法よりも高い性能向上が得られた。
論文 参考訳(メタデータ) (2023-07-24T04:23:08Z) - PINQI: An End-to-End Physics-Informed Approach to Learned Quantitative MRI Reconstruction [0.7199733380797579]
定量的磁気共鳴イメージング(qMRI)は、生体物理パラメータの再現可能な測定を可能にする。
この課題は、取得した生データから所望の組織パラメーターマップを得るために、非線形で不適切な逆問題を解決することである。
我々は、信号、取得モデルに関する知識を統合した新しいqMRI再構成手法であるPINQIを提案し、単一エンドツーエンドのトレーニング可能なニューラルネットワークへの正規化を学習した。
論文 参考訳(メタデータ) (2023-06-19T15:37:53Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
本稿では,ニューラルネットワークを一般化し,トランスフォーマーアーキテクチャを用いて獲得関数を学習する,エンド・ツー・エンドの差別化可能な最初のメタBOフレームワークを提案する。
我々は、この強化学習(RL)によるエンドツーエンドのフレームワークを、ラベル付き取得データの欠如に対処できるようにします。
論文 参考訳(メタデータ) (2023-05-25T10:58:46Z) - Conditional Denoising Diffusion for Sequential Recommendation [62.127862728308045]
GAN(Generative Adversarial Networks)とVAE(VAE)の2つの顕著な生成モデル
GANは不安定な最適化に苦しむ一方、VAEは後続の崩壊と過度に平らな世代である。
本稿では,シーケンスエンコーダ,クロスアテンティブデノナイジングデコーダ,ステップワイズディフューザを含む条件付きデノナイジング拡散モデルを提案する。
論文 参考訳(メタデータ) (2023-04-22T15:32:59Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - FakeCLR: Exploring Contrastive Learning for Solving Latent Discontinuity
in Data-Efficient GANs [24.18718734850797]
Data-Efficient GAN(DE-GAN)は、限られたトレーニングデータで生成モデルを学習することを目的としている。
対照的な学習は、DE-GANの合成品質を高める大きな可能性を示している。
偽のサンプルに対してのみ対照的な学習を行うFakeCLRを提案する。
論文 参考訳(メタデータ) (2022-07-18T14:23:38Z) - Adaptive Anomaly Detection for Internet of Things in Hierarchical Edge
Computing: A Contextual-Bandit Approach [81.5261621619557]
階層エッジコンピューティング(HEC)を用いた適応型異常検出手法を提案する。
まず,複雑性を増した複数のDNNモデルを構築し,それぞれを対応するHEC層に関連付ける。
そこで我々は、文脈帯域問題として定式化され、強化学習ポリシーネットワークを用いて解決される適応モデル選択スキームを設計する。
論文 参考訳(メタデータ) (2021-08-09T08:45:47Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
本稿では,属性空間への分類器の露出を最大化するために,新しいサンプルを生成することを学習する逆学習手法を提案する。
我々のアプローチは、ディープニューラルネットワークが自然に発生する摂動に対して堅牢であることを可能にする。
論文 参考訳(メタデータ) (2020-12-03T10:17:30Z) - Online Kernel based Generative Adversarial Networks [0.45880283710344055]
オンラインカーネルベースのジェネレーティブ・アドバイザリアル・ネットワーク(OKGAN)は,モード崩壊やサイクリングなど,多くのトレーニング問題を緩和する。
OKGANは、合成データ上の他のGANの定式化よりも、逆KL偏差に対して、劇的に優れた性能を発揮する。
論文 参考訳(メタデータ) (2020-06-19T22:54:01Z) - When Relation Networks meet GANs: Relation GANs with Triplet Loss [110.7572918636599]
GAN(Generative Adversarial Network)の学習安定性はいまだに悩みの種である
本稿では,判別器のための関係ネットワークアーキテクチャについて検討し,より優れた一般化と安定性を実現する三重項損失を設計する。
ベンチマークデータセットの実験により、提案された関係判別器と新たな損失は、可変視覚タスクに大幅な改善をもたらすことが示された。
論文 参考訳(メタデータ) (2020-02-24T11:35:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。