APT: Adaptive Personalized Training for Diffusion Models with Limited Data
- URL: http://arxiv.org/abs/2507.02687v1
- Date: Thu, 03 Jul 2025 14:58:08 GMT
- Title: APT: Adaptive Personalized Training for Diffusion Models with Limited Data
- Authors: JungWoo Chae, Jiyoon Kim, JaeWoong Choi, Kyungyul Kim, Sangheum Hwang,
- Abstract summary: We propose a novel framework that mitigates overfitting by employing adaptive training strategies and regularizing the model's internal representations during fine-tuning.<n>Through extensive experiments, we demonstrate that APT effectively mitigates overfitting, preserves prior knowledge, and outperforms existing methods in generating high-quality, diverse images with limited reference data.
- Score: 6.455553965143672
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Personalizing diffusion models using limited data presents significant challenges, including overfitting, loss of prior knowledge, and degradation of text alignment. Overfitting leads to shifts in the noise prediction distribution, disrupting the denoising trajectory and causing the model to lose semantic coherence. In this paper, we propose Adaptive Personalized Training (APT), a novel framework that mitigates overfitting by employing adaptive training strategies and regularizing the model's internal representations during fine-tuning. APT consists of three key components: (1) Adaptive Training Adjustment, which introduces an overfitting indicator to detect the degree of overfitting at each time step bin and applies adaptive data augmentation and adaptive loss weighting based on this indicator; (2)Representation Stabilization, which regularizes the mean and variance of intermediate feature maps to prevent excessive shifts in noise prediction; and (3) Attention Alignment for Prior Knowledge Preservation, which aligns the cross-attention maps of the fine-tuned model with those of the pretrained model to maintain prior knowledge and semantic coherence. Through extensive experiments, we demonstrate that APT effectively mitigates overfitting, preserves prior knowledge, and outperforms existing methods in generating high-quality, diverse images with limited reference data.
Related papers
- Semantic-guided Fine-tuning of Foundation Model for Long-tailed Visual Recognition [38.74388860692423]
We propose a novel approach, Semantic-guided fine-tuning of foundation model for long-tailed visual recognition (Sage)<n>We introduce an SG-Adapter that integrates class descriptions as semantic guidance to guide the fine-tuning of the visual encoder.<n>Experiments on benchmark datasets demonstrate the effectiveness of the proposed Sage in enhancing performance in long-tailed learning.
arXiv Detail & Related papers (2025-07-17T05:47:19Z) - Orthogonal Projection Subspace to Aggregate Online Prior-knowledge for Continual Test-time Adaptation [67.80294336559574]
Continual Test Time Adaptation (CTTA) is a task that requires a source pre-trained model to continually adapt to new scenarios.<n>We propose a novel pipeline, Orthogonal Projection Subspace to aggregate online Prior-knowledge, dubbed OoPk.
arXiv Detail & Related papers (2025-06-23T18:17:39Z) - Conformal Prediction for Zero-Shot Models [20.94974284175104]
We investigate the capabilities of CLIP models under the split conformal prediction paradigm.<n>We propose Conf-OT, a transfer learning setting that operates transductive over the combined calibration and query sets.
arXiv Detail & Related papers (2025-05-30T15:16:19Z) - Paving the way for scientific foundation models: enhancing generalization and robustness in PDEs with constraint-aware pre-training [49.8035317670223]
A scientific foundation model (SciFM) is emerging as a promising tool for learning transferable representations across diverse domains.<n>We propose incorporating PDE residuals into pre-training either as the sole learning signal or in combination with data loss to compensate for limited or infeasible training data.<n>Our results show that pre-training with PDE constraints significantly enhances generalization, outperforming models trained solely on solution data.
arXiv Detail & Related papers (2025-03-24T19:12:39Z) - E2ED^2:Direct Mapping from Noise to Data for Enhanced Diffusion Models [15.270657838960114]
Diffusion models have established themselves as the de facto primary paradigm in visual generative modeling.<n>We present a novel end-to-end learning paradigm that establishes direct optimization from the final generated samples to initial noises.<n>Our method achieves substantial performance gains in terms of Fr'eche't Inception Distance (FID) and CLIP score, even with fewer sampling steps.
arXiv Detail & Related papers (2024-12-30T16:06:31Z) - Continual Human Pose Estimation for Incremental Integration of Keypoints and Pose Variations [12.042768320132694]
This paper reformulates cross-dataset human pose estimation as a continual learning task.
We benchmark this formulation against established regularization-based methods for mitigating catastrophic forgetting.
We show that our approach outperforms existing regularization-based continual learning strategies.
arXiv Detail & Related papers (2024-09-30T16:29:30Z) - Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
We introduce an orthogonal fine-tuning method for efficiently fine-tuning pretrained weights and enabling enhanced robustness and generalization.
A self-regularization strategy is further exploited to maintain the stability in terms of zero-shot generalization of VLMs, dubbed OrthSR.
For the first time, we revisit the CLIP and CoOp with our method to effectively improve the model on few-shot image classficiation scenario.
arXiv Detail & Related papers (2024-07-11T10:35:53Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
Low-rank approximation techniques have become the de facto standard for fine-tuning Large Language Models.
This paper investigates the effectiveness of these methods in capturing the shift of fine-tuning datasets from the initial pre-trained data distribution.
We show that low-rank fine-tuning inadvertently preserves undesirable biases and toxic behaviors.
arXiv Detail & Related papers (2024-05-28T20:43:53Z) - Unmasking Bias in Diffusion Model Training [40.90066994983719]
Denoising diffusion models have emerged as a dominant approach for image generation.
They still suffer from slow convergence in training and color shift issues in sampling.
In this paper, we identify that these obstacles can be largely attributed to bias and suboptimality inherent in the default training paradigm.
arXiv Detail & Related papers (2023-10-12T16:04:41Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
We train an auxiliary model with a self-supervised pretext task on top of an existing predictive model and use the self-supervised error as an additional feature to estimate nonconformity scores.
We empirically demonstrate the benefit of the additional information using both synthetic and real data on the efficiency (width), deficit, and excess of conformal prediction intervals.
arXiv Detail & Related papers (2023-02-23T18:57:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.