Quantum Annealing with chaotic driver Hamiltonians
- URL: http://arxiv.org/abs/2409.20538v1
- Date: Mon, 30 Sep 2024 17:39:54 GMT
- Title: Quantum Annealing with chaotic driver Hamiltonians
- Authors: Henning Schlömer, Subir Sachdev,
- Abstract summary: We investigate driver Hamiltonians based on a bosonic spin version of the Sachdev-Ye-Kitaev (SYK) model.
We find that a considerable proportion of SYK model instances demonstrate significant speedups.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum annealing is a computational approach designed to leverage quantum fluctuations for solving large-scale classical optimization problems. Although incorporating standard transverse field (TF) terms in the annealing process can help navigate sharp minima, the potential for achieving a scalable quantum advantage for general optimization problems remains uncertain. Here, we examine the effectiveness of including chaotic quantum driver Hamiltonians in the annealing dynamics. Specifically, we investigate driver Hamiltonians based on a bosonic spin version of the Sachdev-Ye-Kitaev (SYK) model, which features a high degree of non-locality and non-commutativity. Focusing on MaxCut instances on regular graphs, we find that a considerable proportion of SYK model instances demonstrate significant speedups, especially for challenging graph configurations. Additionally, our analysis of time-to-solution scalings for the low autocorrelation binary sequence (LABS) problem suggests that SYK-type fluctuations can outperform traditional transverse field annealing schedules in large-scale optimization tasks.
Related papers
- MG-Net: Learn to Customize QAOA with Circuit Depth Awareness [51.78425545377329]
Quantum Approximate Optimization Algorithm (QAOA) and its variants exhibit immense potential in tackling optimization challenges.
The requisite circuit depth for satisfactory performance is problem-specific and often exceeds the maximum capability of current quantum devices.
We introduce the Mixer Generator Network (MG-Net), a unified deep learning framework adept at dynamically formulating optimal mixer Hamiltonians.
arXiv Detail & Related papers (2024-09-27T12:28:18Z) - Large-scale quantum annealing simulation with tensor networks and belief propagation [0.0]
We show that quantum annealing for 3-regular graphs can be classically simulated even at scales of 1000 qubits and 5000000qubit gates.
For non-degenerate instances, the unique solution can be read out from the final reduced single-qubit states.
For degenerate problems, such as MaxCut, we introduce an approximate measurement simulation algorithm for graph tensor-network states.
arXiv Detail & Related papers (2024-09-18T18:00:08Z) - Application of Langevin Dynamics to Advance the Quantum Natural Gradient Optimization Algorithm [47.47843839099175]
A Quantum Natural Gradient (QNG) algorithm for optimization of variational quantum circuits has been proposed recently.
In this study, we employ the Langevin equation with a QNG force to demonstrate that its discrete-time solution gives a generalized form, which we call Momentum-QNG.
arXiv Detail & Related papers (2024-09-03T15:21:16Z) - Lindblad-like quantum tomography for non-Markovian quantum dynamical maps [46.350147604946095]
We introduce Lindblad-like quantum tomography (L$ell$QT) as a quantum characterization technique of time-correlated noise in quantum information processors.
We discuss L$ell$QT for the dephasing dynamics of single qubits in detail, which allows for a neat understanding of the importance of including multiple snapshots of the quantum evolution in the likelihood function.
arXiv Detail & Related papers (2024-03-28T19:29:12Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Digitized-Counterdiabatic Quantum Optimization [4.336065967298193]
We propose digitized-diabatic quantum optimization (DCQO) to achieve enhancement over adiabatic quantum optimization for the general Ising spin-glass model.
This is accomplished via the digitization of adiabatic quantum algorithms that are catalysed by the addition of non-stoquastic counterdiabatic terms.
arXiv Detail & Related papers (2022-01-03T18:21:54Z) - Efficient Classical Computation of Quantum Mean Values for Shallow QAOA
Circuits [15.279642278652654]
We present a novel graph decomposition based classical algorithm that scales linearly with the number of qubits for the shallow QAOA circuits.
Our results are not only important for the exploration of quantum advantages with QAOA, but also useful for the benchmarking of NISQ processors.
arXiv Detail & Related papers (2021-12-21T12:41:31Z) - Quantum Approximate Optimization Algorithm applied to the binary
perceptron [0.46664938579243564]
We apply digitized Quantum Annealing (QA) and Quantum Approximate Optimization Algorithm (QAOA) to a paradigmatic task of supervised learning in artificial neural networks.
We provide evidence for the existence of optimal smooth solutions for the QAOA parameters, which are transferable among typical instances of the same problem.
We prove numerically an enhanced performance of QAOA over traditional QA.
arXiv Detail & Related papers (2021-12-19T18:33:22Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Hybrid Quantum Annealing via Molecular Dynamics [0.0]
We introduce a Hamiltonian dynamics of the classical flux variables associated with the quantum spins of the transverse-field Ising model.
Molecular dynamics of the classical flux can be used as a powerful preconditioner to sort out the frozen and ambivalent spins for quantum annealers.
arXiv Detail & Related papers (2020-04-08T12:34:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.