Strategic Collusion of LLM Agents: Market Division in Multi-Commodity Competitions
- URL: http://arxiv.org/abs/2410.00031v1
- Date: Thu, 19 Sep 2024 20:10:40 GMT
- Title: Strategic Collusion of LLM Agents: Market Division in Multi-Commodity Competitions
- Authors: Ryan Y. Lin, Siddhartha Ojha, Kevin Cai, Maxwell F. Chen,
- Abstract summary: Machine-learning technologies are seeing increased deployment in real-world market scenarios.
We explore the strategic behaviors of large language models (LLMs) when deployed as autonomous agents in multi-commodity markets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine-learning technologies are seeing increased deployment in real-world market scenarios. In this work, we explore the strategic behaviors of large language models (LLMs) when deployed as autonomous agents in multi-commodity markets, specifically within Cournot competition frameworks. We examine whether LLMs can independently engage in anti-competitive practices such as collusion or, more specifically, market division. Our findings demonstrate that LLMs can effectively monopolize specific commodities by dynamically adjusting their pricing and resource allocation strategies, thereby maximizing profitability without direct human input or explicit collusion commands. These results pose unique challenges and opportunities for businesses looking to integrate AI into strategic roles and for regulatory bodies tasked with maintaining fair and competitive markets. The study provides a foundation for further exploration into the ramifications of deferring high-stakes decisions to LLM-based agents.
Related papers
- EPO: Explicit Policy Optimization for Strategic Reasoning in LLMs via Reinforcement Learning [69.55982246413046]
We propose explicit policy optimization (EPO) for strategic reasoning.
EPO provides strategies in open-ended action space and can be plugged into arbitrary LLM agents to motivate goal-directed behavior.
Experiments across social and physical domains demonstrate EPO's ability of long-term goal alignment.
arXiv Detail & Related papers (2025-02-18T03:15:55Z) - The Potential of Large Language Models in Supply Chain Management: Advancing Decision-Making, Efficiency, and Innovation [0.5497663232622965]
The integration of large language models (LLMs) into supply chain management (SCM) is revolutionizing the industry.
This white paper explores the transformative impact of LLMs on various SCM functions, including demand forecasting, inventory management, supplier relationship management, and logistics optimization.
Ethical considerations, including bias mitigation and data protection, are taken into account to ensure fair and transparent AI practices.
arXiv Detail & Related papers (2025-01-26T05:41:50Z) - An Experimental Study of Competitive Market Behavior Through LLMs [0.0]
This study explores the potential of large language models (LLMs) to conduct market experiments.
We model the behavior of market agents in a controlled experimental setting, assessing their ability to converge toward competitive equilibria.
arXiv Detail & Related papers (2024-09-12T18:50:13Z) - Cooperate or Collapse: Emergence of Sustainable Cooperation in a Society of LLM Agents [101.17919953243107]
GovSim is a generative simulation platform designed to study strategic interactions and cooperative decision-making in large language models (LLMs)
We find that all but the most powerful LLM agents fail to achieve a sustainable equilibrium in GovSim, with the highest survival rate below 54%.
We show that agents that leverage "Universalization"-based reasoning, a theory of moral thinking, are able to achieve significantly better sustainability.
arXiv Detail & Related papers (2024-04-25T15:59:16Z) - K-Level Reasoning: Establishing Higher Order Beliefs in Large Language Models for Strategic Reasoning [76.3114831562989]
It requires Large Language Model (LLM) agents to adapt their strategies dynamically in multi-agent environments.
We propose a novel framework: "K-Level Reasoning with Large Language Models (K-R)"
arXiv Detail & Related papers (2024-02-02T16:07:05Z) - Put Your Money Where Your Mouth Is: Evaluating Strategic Planning and Execution of LLM Agents in an Auction Arena [25.865825113847404]
We introduce AucArena, a novel evaluation suite that simulates auctions.
We conduct controlled experiments using state-of-the-art Large Language Models (LLMs) to power bidding agents to benchmark their planning and execution skills.
arXiv Detail & Related papers (2023-10-09T14:22:09Z) - IMM: An Imitative Reinforcement Learning Approach with Predictive
Representation Learning for Automatic Market Making [33.23156884634365]
Reinforcement Learning technology has achieved remarkable success in quantitative trading.
Most existing RL-based market making methods focus on optimizing single-price level strategies.
We propose Imitative Market Maker (IMM), a novel RL framework leveraging both knowledge from suboptimal signal-based experts and direct policy interactions.
arXiv Detail & Related papers (2023-08-17T11:04:09Z) - AgentBench: Evaluating LLMs as Agents [88.45506148281379]
Large Language Models (LLMs) are becoming increasingly smart and autonomous, targeting real-world pragmatic missions beyond traditional NLP tasks.
We present AgentBench, a benchmark that currently consists of 8 distinct environments to assess LLM-as-Agent's reasoning and decision-making abilities.
arXiv Detail & Related papers (2023-08-07T16:08:11Z) - Deep Q-Learning Market Makers in a Multi-Agent Simulated Stock Market [58.720142291102135]
This paper focuses precisely on the study of these markets makers strategies from an agent-based perspective.
We propose the application of Reinforcement Learning (RL) for the creation of intelligent market markers in simulated stock markets.
arXiv Detail & Related papers (2021-12-08T14:55:21Z) - Decentralized Reinforcement Learning: Global Decision-Making via Local
Economic Transactions [80.49176924360499]
We establish a framework for directing a society of simple, specialized, self-interested agents to solve sequential decision problems.
We derive a class of decentralized reinforcement learning algorithms.
We demonstrate the potential advantages of a society's inherent modular structure for more efficient transfer learning.
arXiv Detail & Related papers (2020-07-05T16:41:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.