Stochastic Market Games
- URL: http://arxiv.org/abs/2207.07388v3
- Date: Tue, 19 Jul 2022 05:52:24 GMT
- Title: Stochastic Market Games
- Authors: Kyrill Schmid, Lenz Belzner, Robert M\"uller, Johannes Tochtermann,
Claudia Linnhoff-Popien
- Abstract summary: We propose to utilize market forces to provide incentives for agents to become cooperative.
As demonstrated in an iterated version of the Prisoner's Dilemma, the proposed market formulation can change the dynamics of the game.
We empirically find that the presence of markets can improve both the overall result and agent individual returns via their trading activities.
- Score: 10.979093424231532
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Some of the most relevant future applications of multi-agent systems like
autonomous driving or factories as a service display mixed-motive scenarios,
where agents might have conflicting goals. In these settings agents are likely
to learn undesirable outcomes in terms of cooperation under independent
learning, such as overly greedy behavior. Motivated from real world societies,
in this work we propose to utilize market forces to provide incentives for
agents to become cooperative. As demonstrated in an iterated version of the
Prisoner's Dilemma, the proposed market formulation can change the dynamics of
the game to consistently learn cooperative policies. Further we evaluate our
approach in spatially and temporally extended settings for varying numbers of
agents. We empirically find that the presence of markets can improve both the
overall result and agent individual returns via their trading activities.
Related papers
- Learning to Balance Altruism and Self-interest Based on Empathy in Mixed-Motive Games [47.8980880888222]
Multi-agent scenarios often involve mixed motives, demanding altruistic agents capable of self-protection against potential exploitation.
We propose LASE Learning to balance Altruism and Self-interest based on Empathy.
LASE allocates a portion of its rewards to co-players as gifts, with this allocation adapting dynamically based on the social relationship.
arXiv Detail & Related papers (2024-10-10T12:30:56Z) - Cooperation Dynamics in Multi-Agent Systems: Exploring Game-Theoretic Scenarios with Mean-Field Equilibria [0.0]
This paper investigates strategies to invoke cooperation in game-theoretic scenarios, namely the Iterated Prisoner's Dilemma.
Existing cooperative strategies are analyzed for their effectiveness in promoting group-oriented behavior in repeated games.
The study extends to scenarios with exponentially growing agent populations.
arXiv Detail & Related papers (2023-09-28T08:57:01Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgent is a novel framework that harnesses large language models to create proactive agents.
ProAgent can analyze the present state, and infer the intentions of teammates from observations.
ProAgent exhibits a high degree of modularity and interpretability, making it easily integrated into various coordination scenarios.
arXiv Detail & Related papers (2023-08-22T10:36:56Z) - AgentVerse: Facilitating Multi-Agent Collaboration and Exploring
Emergent Behaviors [93.38830440346783]
We propose a multi-agent framework framework that can collaboratively adjust its composition as a greater-than-the-sum-of-its-parts system.
Our experiments demonstrate that framework framework can effectively deploy multi-agent groups that outperform a single agent.
In view of these behaviors, we discuss some possible strategies to leverage positive ones and mitigate negative ones for improving the collaborative potential of multi-agent groups.
arXiv Detail & Related papers (2023-08-21T16:47:11Z) - Learning to Participate through Trading of Reward Shares [1.5484595752241124]
We propose a method inspired by the stock market, where agents have the opportunity to participate in other agents' returns by acquiring reward shares.
Intuitively, an agent may learn to act according to the common interest when being directly affected by the other agents' rewards.
arXiv Detail & Related papers (2023-01-18T10:25:55Z) - Towards Multi-Agent Reinforcement Learning driven Over-The-Counter
Market Simulations [16.48389671789281]
We study a game between liquidity provider and liquidity taker agents interacting in an over-the-counter market.
By playing against each other, our deep-reinforcement-learning-driven agents learn emergent behaviors.
We show convergence rates for our multi-agent policy gradient algorithm under a transitivity assumption.
arXiv Detail & Related papers (2022-10-13T17:06:08Z) - Decentralized scheduling through an adaptive, trading-based multi-agent
system [1.7403133838762448]
In multi-agent reinforcement learning systems, the actions of one agent can have a negative impact on the rewards of other agents.
This work applies a trading approach to a simulated scheduling environment, where the agents are responsible for the assignment of incoming jobs to compute cores.
The agents can trade the usage right of computational cores to process high-priority, high-reward jobs faster than low-priority, low-reward jobs.
arXiv Detail & Related papers (2022-07-05T13:50:18Z) - Finding General Equilibria in Many-Agent Economic Simulations Using Deep
Reinforcement Learning [72.23843557783533]
We show that deep reinforcement learning can discover stable solutions that are epsilon-Nash equilibria for a meta-game over agent types.
Our approach is more flexible and does not need unrealistic assumptions, e.g., market clearing.
We demonstrate our approach in real-business-cycle models, a representative family of DGE models, with 100 worker-consumers, 10 firms, and a government who taxes and redistributes.
arXiv Detail & Related papers (2022-01-03T17:00:17Z) - Using Non-Stationary Bandits for Learning in Repeated Cournot Games with
Non-Stationary Demand [11.935419090901524]
In this paper, we model repeated Cournot games with non-stationary demand.
The set of arms/actions that an agent can choose from represents discrete production quantities.
We propose a novel algorithm 'Adaptive with Weighted Exploration (AWE) $epsilon$-greedy' which is remotely based on the well-known $epsilon$-greedy approach.
arXiv Detail & Related papers (2022-01-03T05:51:47Z) - Learning Latent Representations to Influence Multi-Agent Interaction [65.44092264843538]
We propose a reinforcement learning-based framework for learning latent representations of an agent's policy.
We show that our approach outperforms the alternatives and learns to influence the other agent.
arXiv Detail & Related papers (2020-11-12T19:04:26Z) - Learning to Incentivize Other Learning Agents [73.03133692589532]
We show how to equip RL agents with the ability to give rewards directly to other agents, using a learned incentive function.
Such agents significantly outperform standard RL and opponent-shaping agents in challenging general-sum Markov games.
Our work points toward more opportunities and challenges along the path to ensure the common good in a multi-agent future.
arXiv Detail & Related papers (2020-06-10T20:12:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.