論文の概要: Advancing Perception in Artificial Intelligence through Principles of
Cognitive Science
- arxiv url: http://arxiv.org/abs/2310.08803v1
- Date: Fri, 13 Oct 2023 01:21:55 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-16 14:53:28.460629
- Title: Advancing Perception in Artificial Intelligence through Principles of
Cognitive Science
- Title(参考訳): 認知科学の原理による人工知能の知覚の向上
- Authors: Palaash Agrawal, Cheston Tan and Heena Rathore
- Abstract要約: 我々は、周囲の信号を入力として取り、それを処理して環境を理解する、知覚の認知機能に焦点を当てる。
我々は、認知科学にインスパイアされたAIシステムを構築するために、AIに一連の方法を提案する。
- 参考スコア(独自算出の注目度): 6.637438611344584
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although artificial intelligence (AI) has achieved many feats at a rapid
pace, there still exist open problems and fundamental shortcomings related to
performance and resource efficiency. Since AI researchers benchmark a
significant proportion of performance standards through human intelligence,
cognitive sciences-inspired AI is a promising domain of research. Studying
cognitive science can provide a fresh perspective to building fundamental
blocks in AI research, which can lead to improved performance and efficiency.
In this review paper, we focus on the cognitive functions of perception, which
is the process of taking signals from one's surroundings as input, and
processing them to understand the environment. Particularly, we study and
compare its various processes through the lens of both cognitive sciences and
AI. Through this study, we review all current major theories from various
sub-disciplines of cognitive science (specifically neuroscience, psychology and
linguistics), and draw parallels with theories and techniques from current
practices in AI. We, hence, present a detailed collection of methods in AI for
researchers to build AI systems inspired by cognitive science. Further, through
the process of reviewing the state of cognitive-inspired AI, we point out many
gaps in the current state of AI (with respect to the performance of the human
brain), and hence present potential directions for researchers to develop
better perception systems in AI.
- Abstract(参考訳): 人工知能(AI)は、急速に多くの成果を上げてきたが、まだ未解決の問題や、性能や資源効率に関する根本的な欠点が残っている。
AI研究者は人間の知性を通じてパフォーマンス標準のかなりの割合をベンチマークするため、認知科学にインスパイアされたAIは研究の有望な領域である。
認知科学を研究することは、ai研究の基本ブロックを構築する新しい視点を提供することができ、それによってパフォーマンスと効率が向上する。
本稿では,周囲からの信号を入力として受け取り,それらを処理して環境を理解する過程である知覚の認知機能に着目した。
特に、認知科学とAIの両方のレンズを通して、その様々なプロセスを研究・比較する。
本研究では,認知科学の様々なサブ分野(特に神経科学,心理学,言語学)の現在の主要な理論を概観し,AIの現在の実践から理論と技術とを対比する。
そこで我々は,認知科学にインスパイアされたAIシステムを構築するための,AIの詳細な手法を提示する。
さらに、認知に触発されたAIの状態をレビューする過程で、AIの現状(人間の脳のパフォーマンスに関する)における多くのギャップを指摘し、研究者がAIでより良い知覚システムを開発するための潜在的方向を示す。
関連論文リスト
- Aligning Generalisation Between Humans and Machines [74.120848518198]
近年のAIの進歩は、科学的発見と意思決定支援において人間を支援できる技術をもたらしたが、民主主義と個人を妨害する可能性がある。
AIの責任ある使用は、ますます人間とAIのチームの必要性を示している。
これらの相互作用の重要かつしばしば見落とされがちな側面は、人間と機械が一般化する異なる方法である。
論文 参考訳(メタデータ) (2024-11-23T18:36:07Z) - Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - Is artificial consciousness achievable? Lessons from the human brain [0.0]
進化の観点から,人工意識の発達に関する問題を分析する。
我々は、人間の脳の進化と、その意識との関係を参照モデルとして捉えている。
我々は,AIの認知処理における共通点と,人間の意識経験との違いを明確にすることを提案する。
論文 参考訳(メタデータ) (2024-04-18T12:59:44Z) - Advancing Explainable AI Toward Human-Like Intelligence: Forging the
Path to Artificial Brain [0.7770029179741429]
説明可能なAI(XAI)における人工知能(AI)と神経科学の交差は、複雑な意思決定プロセスにおける透明性と解釈可能性を高めるために重要である。
本稿では,機能ベースから人間中心のアプローチまで,XAI方法論の進化について考察する。
生成モデルにおける説明可能性の達成、責任あるAIプラクティスの確保、倫理的意味への対処に関する課題について論じる。
論文 参考訳(メタデータ) (2024-02-07T14:09:11Z) - AI for Mathematics: A Cognitive Science Perspective [86.02346372284292]
数学は人間によって開発された最も強力な概念体系の1つである。
AIの急速な進歩、特に大規模言語モデル(LLM)の進歩による推進により、そのようなシステム構築に対する新たな、広範な関心が生まれている。
論文 参考訳(メタデータ) (2023-10-19T02:00:31Z) - The Future of Fundamental Science Led by Generative Closed-Loop
Artificial Intelligence [67.70415658080121]
機械学習とAIの最近の進歩は、技術革新、製品開発、社会全体を破壊している。
AIは、科学的な実践とモデル発見のための高品質なデータの大規模なデータセットへのアクセスがより困難であるため、基礎科学にはあまり貢献していない。
ここでは、科学的な発見に対するAI駆動、自動化、クローズドループアプローチの側面を調査し、調査する。
論文 参考訳(メタデータ) (2023-07-09T21:16:56Z) - Suffering Toasters -- A New Self-Awareness Test for AI [0.0]
現在のインテリジェンステストはすべて、インテリジェンスの存在や欠如を示すには不十分である、と我々は主張する。
人工自己認識のための新しい手法を提案し,その実装の概要を述べる。
論文 参考訳(メタデータ) (2023-06-29T18:58:01Z) - Machine Psychology [54.287802134327485]
我々は、心理学にインスパイアされた行動実験において、研究のための実りある方向が、大きな言語モデルに係わっていると論じる。
本稿では,本手法が表に示す理論的視点,実験パラダイム,計算解析技術について述べる。
これは、パフォーマンスベンチマークを超えた、生成人工知能(AI)のための「機械心理学」の道を開くものだ。
論文 参考訳(メタデータ) (2023-03-24T13:24:41Z) - From Psychological Curiosity to Artificial Curiosity: Curiosity-Driven
Learning in Artificial Intelligence Tasks [56.20123080771364]
心理学的好奇心は、探索と情報取得を通じて学習を強化するために、人間の知性において重要な役割を果たす。
人工知能(AI)コミュニティでは、人工好奇心は効率的な学習に自然な本質的な動機を与える。
CDLはますます人気を博し、エージェントは新たな知識を学習するために自己動機付けされている。
論文 参考訳(メタデータ) (2022-01-20T17:07:03Z) - Conscious AI [6.061244362532694]
人工知能の最近の進歩は、分類タスクの人間規模のスピードと精度を達成しました。
現在のシステムは、パターンを認識して分類する必要はない。
AIが直感や共感を必要とするより複雑なタスクに進むためには、メタシンキング、創造性、共感などの能力が人間の自己認識や意識に似ています。
論文 参考訳(メタデータ) (2021-05-12T15:53:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。