Prediction and Detection of Terminal Diseases Using Internet of Medical Things: A Review
- URL: http://arxiv.org/abs/2410.00034v1
- Date: Sun, 22 Sep 2024 15:02:33 GMT
- Title: Prediction and Detection of Terminal Diseases Using Internet of Medical Things: A Review
- Authors: Akeem Temitope Otapo, Alice Othmani, Ghazaleh Khodabandelou, Zuheng Ming,
- Abstract summary: AI-driven models have achieved over 98% accuracy in predicting heart disease, chronic kidney disease (CKD), Alzheimer's disease, and lung cancer.
The incorporation of IoMT data, which is vast and heterogeneous, adds complexities in ensuring interoperability and security to protect patient privacy.
Future research should focus on data standardization and advanced preprocessing techniques to improve data quality and interoperability.
- Score: 4.4389631374821255
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The integration of Artificial Intelligence (AI) and the Internet of Medical Things (IoMT) in healthcare, through Machine Learning (ML) and Deep Learning (DL) techniques, has advanced the prediction and diagnosis of chronic diseases. AI-driven models such as XGBoost, Random Forest, CNNs, and LSTM RNNs have achieved over 98\% accuracy in predicting heart disease, chronic kidney disease (CKD), Alzheimer's disease, and lung cancer, using datasets from platforms like Kaggle, UCI, private institutions, and real-time IoMT sources. However, challenges persist due to variations in data quality, patient demographics, and formats from different hospitals and research sources. The incorporation of IoMT data, which is vast and heterogeneous, adds complexities in ensuring interoperability and security to protect patient privacy. AI models often struggle with overfitting, performing well in controlled environments but less effectively in real-world clinical settings. Moreover, multi-morbidity scenarios especially for rare diseases like dementia, stroke, and cancers remain insufficiently addressed. Future research should focus on data standardization and advanced preprocessing techniques to improve data quality and interoperability. Transfer learning and ensemble methods are crucial for improving model generalizability across clinical settings. Additionally, the exploration of disease interactions and the development of predictive models for chronic illness intersections is needed. Creating standardized frameworks and open-source tools for integrating federated learning, blockchain, and differential privacy into IoMT systems will also ensure robust data privacy and security.
Related papers
- FedCL-Ensemble Learning: A Framework of Federated Continual Learning with Ensemble Transfer Learning Enhanced for Alzheimer's MRI Classifications while Preserving Privacy [0.0]
This research work primary uses transfer learning models such as ResNet, ImageNet, and VNet to extract high-level features from medical image data.
The proposed model was built using federated learning without sharing sensitive patient data.
arXiv Detail & Related papers (2024-11-15T13:49:22Z) - FedCVD: The First Real-World Federated Learning Benchmark on Cardiovascular Disease Data [52.55123685248105]
Cardiovascular diseases (CVDs) are currently the leading cause of death worldwide, highlighting the critical need for early diagnosis and treatment.
Machine learning (ML) methods can help diagnose CVDs early, but their performance relies on access to substantial data with high quality.
This paper presents the first real-world FL benchmark for cardiovascular disease detection, named FedCVD.
arXiv Detail & Related papers (2024-10-28T02:24:01Z) - TrialBench: Multi-Modal Artificial Intelligence-Ready Clinical Trial Datasets [57.067409211231244]
This paper presents meticulously curated AIready datasets covering multi-modal data (e.g., drug molecule, disease code, text, categorical/numerical features) and 8 crucial prediction challenges in clinical trial design.
We provide basic validation methods for each task to ensure the datasets' usability and reliability.
We anticipate that the availability of such open-access datasets will catalyze the development of advanced AI approaches for clinical trial design.
arXiv Detail & Related papers (2024-06-30T09:13:10Z) - Architecture of Data Anomaly Detection-Enhanced Decentralized Expert
System for Early-Stage Alzheimer's Disease Prediction [0.0]
Alzheimer's Disease is a global health challenge that requires early and accurate detection to improve patient outcomes.
This study introduces a groundbreaking decentralized expert system that combines blockchain technology with Artificial Intelligence (AI) to integrate robust anomaly detection for patient-submitted data.
arXiv Detail & Related papers (2023-11-01T08:56:03Z) - Building Flexible, Scalable, and Machine Learning-ready Multimodal
Oncology Datasets [17.774341783844026]
This work proposes Multimodal Integration of Oncology Data System (MINDS)
MINDS is a flexible, scalable, and cost-effective metadata framework for efficiently fusing disparate data from public sources.
By harmonizing multimodal data, MINDS aims to potentially empower researchers with greater analytical ability.
arXiv Detail & Related papers (2023-09-30T15:44:39Z) - Revolutionizing Disease Diagnosis: A Microservices-Based Architecture
for Privacy-Preserving and Efficient IoT Data Analytics Using Federated
Learning [0.0]
Deep learning-based disease diagnosis applications are essential for accurate diagnosis at various disease stages.
By positioning processing resources closer to the device, a distributed computing paradigm has the potential to revolutionize disease diagnosis.
This study proposes a federated-based approach for IoT data analytics systems to satisfy privacy and performance requirements.
arXiv Detail & Related papers (2023-08-27T06:31:43Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
We propose a new incomplete multimodal data integration approach that employs transformers and generative adversarial networks.
We apply our new method to predict cognitive degeneration and disease outcomes using the multimodal imaging genetic data from Alzheimer's Disease Neuroimaging Initiative cohort.
arXiv Detail & Related papers (2023-05-25T16:29:16Z) - Decentralized Distributed Learning with Privacy-Preserving Data
Synthesis [9.276097219140073]
In the medical field, multi-center collaborations are often sought to yield more generalizable findings by leveraging the heterogeneity of patient and clinical data.
Recent privacy regulations hinder the possibility to share data, and consequently, to come up with machine learning-based solutions that support diagnosis and prognosis.
We present a decentralized distributed method that integrates features from local nodes, providing models able to generalize across multiple datasets while maintaining privacy.
arXiv Detail & Related papers (2022-06-20T23:49:38Z) - When Accuracy Meets Privacy: Two-Stage Federated Transfer Learning
Framework in Classification of Medical Images on Limited Data: A COVID-19
Case Study [77.34726150561087]
COVID-19 pandemic has spread rapidly and caused a shortage of global medical resources.
CNN has been widely utilized and verified in analyzing medical images.
arXiv Detail & Related papers (2022-03-24T02:09:41Z) - FLOP: Federated Learning on Medical Datasets using Partial Networks [84.54663831520853]
COVID-19 Disease due to the novel coronavirus has caused a shortage of medical resources.
Different data-driven deep learning models have been developed to mitigate the diagnosis of COVID-19.
The data itself is still scarce due to patient privacy concerns.
We propose a simple yet effective algorithm, named textbfFederated textbfL textbfon Medical datasets using textbfPartial Networks (FLOP)
arXiv Detail & Related papers (2021-02-10T01:56:58Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.