論文の概要: Proceedings of the 22nd International Overture Workshop
- arxiv url: http://arxiv.org/abs/2410.00071v1
- Date: Mon, 30 Sep 2024 13:17:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-05 15:09:43.543352
- Title: Proceedings of the 22nd International Overture Workshop
- Title(参考訳): 第22回国際オーバーチュアワークショップに参加して
- Authors: Hugo Daniel Macedo, Ken Pierce, Leo Freitas,
- Abstract要約: この巻は2024年9月10日に開催された第22回国際オーバーチュアワークショップで発表された論文を含んでいる。
このイベントは、オープンソースのプロジェクト Overture と関連するツールとフォーマリズムである Vienna Development Method (VDM) に関する一連のワークショップの最新のものとなった。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This volume contains the papers presented at the 22nd International Overture Workshop, held on the 10th of September 2024. This event was the latest in a series of workshops around the Vienna Development Method (VDM), the open-source project Overture, and related tools and formalisms. VDM is one of the longest established formal methods for systems development. A lively community of researchers and practitioners has grown up in academia and industry has grown around the modelling languages (VDM-SL, VDM++, VDM-RT, CML) and tools (VDMTools, Overture, Crescendo, Symphony, the INTO-CPS chain, and ViennaTalk). Together, these provide a platform for work on modelling and analysis technology that includes static and dynamic analysis, test generation, execution support, and model checking. This workshop provided updates on the emerging technology of VDM/Overture, including collaboration infrastructure, collaborative modelling and co-simulation for Cyber-Physical Systems.
- Abstract(参考訳): この巻は2024年9月10日に開催された第22回国際オーバーチュアワークショップで発表された論文を含んでいる。
このイベントは、オープンソースのプロジェクト Overture と関連するツールとフォーマリズムである Vienna Development Method (VDM) に関する一連のワークショップの最新のものとなった。
VDMは、システム開発のための最も長い公式な方法の1つである。
研究者や実践者の活発なコミュニティがアカデミックで成長し、業界はモデリング言語(VDM-SL、VDM++、VDM-RT、CML)とツール(VDMTools、Overture、Crescendo、Symphony、INTO-CPSチェーン、EenenTalk)を中心に成長してきた。
これらとともに、静的および動的解析、テスト生成、実行サポート、モデルチェックを含むモデリングと分析技術に取り組むためのプラットフォームを提供する。
このワークショップは、コラボレーションインフラストラクチャ、協調モデリング、サイバー物理システムのための共シミュレーションを含む、VDM/Overtureの新しい技術のアップデートを提供した。
関連論文リスト
- On the use of Large Language Models in Model-Driven Engineering [9.218130273952385]
この記事では、モデル駆動工学におけるLanguage Large Modelsのシームレスな統合に関する技術的な考察を概説する。
本稿では,モデリング生態系の管理,探索,進化を促進するため,LLM技術の展開を構想する。
論文 参考訳(メタデータ) (2024-10-22T19:10:46Z) - Multimodal Large Language Models and Tunings: Vision, Language, Sensors, Audio, and Beyond [51.141270065306514]
このチュートリアルは、マルチモーダルAIを活用するための知識とスキルを研究者、実践者、新参者に提供することを目的としている。
最新のマルチモーダルデータセットと事前訓練されたモデル、例えばビジョンや言語以外のものについても取り上げる。
ハンズオン実験室は、最先端のマルチモーダルモデルで実践的な経験を提供する。
論文 参考訳(メタデータ) (2024-10-08T01:41:56Z) - VLM2Vec: Training Vision-Language Models for Massive Multimodal Embedding Tasks [60.5257456681402]
我々は、幅広い下流タスクを扱える普遍的な埋め込みモデルを構築している。
1 MMEB(Massive Multimodal Embedding Benchmark)は、4 つのメタタスク(分類、視覚的質問応答、マルチモーダル検索、視覚的グラウンド)と36 つのデータセット(20 のトレーニングと16 の評価データセットを含む)と、2 の VLM2Vec (Vision-Language Model -> Vector) を含む。
論文 参考訳(メタデータ) (2024-10-07T16:14:05Z) - LLMs Meet Multimodal Generation and Editing: A Survey [89.76691959033323]
本調査では,画像,ビデオ,3D,オーディオなど,さまざまな領域にわたるマルチモーダル生成と編集について詳述する。
これらの分野でのマイルストーンの成果を要約し、これらの研究をLLM法とCLIP/T5法に分類する。
我々は、既存の生成モデルを人間とコンピュータの相互作用に活用できるツール強化マルチモーダルエージェントを掘り下げる。
論文 参考訳(メタデータ) (2024-05-29T17:59:20Z) - The Revolution of Multimodal Large Language Models: A Survey [46.84953515670248]
MLLM(Multimodal Large Language Models)は、視覚とテキストのモダリティをシームレスに統合することができる。
本稿では,近年の視覚的MLLMのレビュー,アーキテクチャ選択,マルチモーダルアライメント戦略,トレーニング手法について述べる。
論文 参考訳(メタデータ) (2024-02-19T19:01:01Z) - Proceedings of the 21st International Overture Workshop [0.0]
この巻は2023年3月10日に開催された第21回国際オーバーチュアワークショップで発表された論文を含んでいる。
このイベントは、オープンソースのプロジェクト Overture と関連するツールとフォーマリズムである Vienna Development Method (VDM) に関する一連のワークショップの最新のものとなった。
論文 参考訳(メタデータ) (2023-11-13T07:28:35Z) - Current Trends in Digital Twin Development, Maintenance, and Operation: An Interview Study [0.2871849986181679]
デジタルツイン(DT)は、しばしば物理的実体と対応する仮想実体(VE)のペアリングとして定義される。
デジタル双生児の生活段階と密接に関連している産学専門職19名を対象に半構造化面接を行った。
論文 参考訳(メタデータ) (2023-06-16T12:19:28Z) - Large-scale Multi-Modal Pre-trained Models: A Comprehensive Survey [66.18478838828231]
マルチモーダルな事前訓練型大型モデルは近年ますます注目を集めている。
本稿では, 自然言語処理, コンピュータビジョン, 音声処理における従来の深層・深層・深層・深層・深層・深層・深層・深層・深層・深層・深層・深層・深層・深層・深層・深層・深層・深層・深層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・高層・
次に,マルチモーダル・プレトレーニング・モデル(MM-PTM)のタスク定義,課題,メリットを紹介し,データ,目的,ネットワーク,知識強化による事前トレーニングに着目して,MM-PTMについて議論する。
論文 参考訳(メタデータ) (2023-02-20T15:34:03Z) - DIME: Fine-grained Interpretations of Multimodal Models via Disentangled
Local Explanations [119.1953397679783]
我々は,マルチモーダルモデルの解釈における最先端化に注力する。
提案手法であるDIMEは,マルチモーダルモデルの高精度かつきめ細かな解析を可能にする。
論文 参考訳(メタデータ) (2022-03-03T20:52:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。