Evaluating the performance of state-of-the-art esg domain-specific pre-trained large language models in text classification against existing models and traditional machine learning techniques
- URL: http://arxiv.org/abs/2410.00207v1
- Date: Mon, 30 Sep 2024 20:08:32 GMT
- Title: Evaluating the performance of state-of-the-art esg domain-specific pre-trained large language models in text classification against existing models and traditional machine learning techniques
- Authors: Tin Yuet Chung, Majid Latifi,
- Abstract summary: This research investigates the classification of Environmental, Social, and Governance (ESG) information within textual disclosures.
The aim is to develop and evaluate binary classification models capable of accurately identifying and categorizing E, S and G-related content respectively.
The motivation for this research stems from the growing importance of ESG considerations in investment decisions and corporate accountability.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This research investigates the classification of Environmental, Social, and Governance (ESG) information within textual disclosures. The aim is to develop and evaluate binary classification models capable of accurately identifying and categorizing E, S and G-related content respectively. The motivation for this research stems from the growing importance of ESG considerations in investment decisions and corporate accountability. Accurate and efficient classification of ESG information is crucial for stakeholders to understand the impact of companies on sustainability and to make informed decisions. The research uses a quantitative approach involving data collection, data preprocessing, and the development of ESG-focused Large Language Models (LLMs) and traditional machine learning (Support Vector Machines, XGBoost) classifiers. Performance evaluation guides iterative refinement until satisfactory metrics are achieved. The research compares traditional machine learning techniques (Support Vector Machines, XGBoost), state-of-the-art language model (FinBERT-ESG) and fine-tuned LLMs like Llama 2, by employing standard Natural Language Processing performance metrics such as accuracy, precision, recall, F1-score. A novel fine-tuning method, Qlora, is applied to LLMs, resulting in significant performance improvements across all ESG domains. The research also develops domain-specific fine-tuned models, such as EnvLlama 2-Qlora, SocLlama 2-Qlora, and GovLlama 2-Qlora, which demonstrate impressive results in ESG text classification.
Related papers
- Aggregated Knowledge Model: Enhancing Domain-Specific QA with Fine-Tuned and Retrieval-Augmented Generation Models [0.0]
This paper introduces a novel approach to enhancing closed-domain Question Answering (QA) systems.
It focuses on the specific needs of the Lawrence Berkeley National Laboratory (LBL) Science Information Technology (ScienceIT) domain.
arXiv Detail & Related papers (2024-10-24T00:49:46Z) - Language Models are Graph Learners [70.14063765424012]
Language Models (LMs) are challenging the dominance of domain-specific models, including Graph Neural Networks (GNNs) and Graph Transformers (GTs)
We propose a novel approach that empowers off-the-shelf LMs to achieve performance comparable to state-of-the-art GNNs on node classification tasks.
arXiv Detail & Related papers (2024-10-03T08:27:54Z) - Are Large Language Models Good Classifiers? A Study on Edit Intent Classification in Scientific Document Revisions [62.12545440385489]
Large language models (LLMs) have brought substantial advancements in text generation, but their potential for enhancing classification tasks remains underexplored.
We propose a framework for thoroughly investigating fine-tuning LLMs for classification, including both generation- and encoding-based approaches.
We instantiate this framework in edit intent classification (EIC), a challenging and underexplored classification task.
arXiv Detail & Related papers (2024-10-02T20:48:28Z) - Annotation Guidelines-Based Knowledge Augmentation: Towards Enhancing Large Language Models for Educational Text Classification [11.69740323250258]
We propose the Guidelines-based Knowledge Augmentation (AGKA) approach to improve Large Language Models (LLMs)
AGKA employs GPT 4.0 to retrieve label definition knowledge from annotation guidelines, and then applies the random under-sampler to select a few typical examples.
The study results demonstrate that AGKA can enhance non-fine-tuned LLMs, particularly GPT 4.0 and Llama 3 70B.
arXiv Detail & Related papers (2024-06-03T03:09:01Z) - Performance evaluation of Reddit Comments using Machine Learning and Natural Language Processing methods in Sentiment Analysis [0.764671395172401]
We evaluate sentiment analysis methods across a corpus of 58,000 comments on Reddit.
Our research expands the scope by evaluating a diverse array of models.
Our findings reveal that the RoBERTa model consistently outperforms the baseline models.
arXiv Detail & Related papers (2024-05-27T03:59:28Z) - Enriched BERT Embeddings for Scholarly Publication Classification [0.13654846342364302]
The NSLP 2024 FoRC Task I addresses this challenge organized as a competition.
The goal is to develop a classifier capable of predicting one of 123 predefined classes from the Open Research Knowledge Graph (ORKG) taxonomy of research fields for a given article.
arXiv Detail & Related papers (2024-05-07T09:05:20Z) - Evaluating Generative Language Models in Information Extraction as Subjective Question Correction [49.729908337372436]
We propose a new evaluation method, SQC-Score.
Inspired by the principles in subjective question correction, we propose a new evaluation method, SQC-Score.
Results on three information extraction tasks show that SQC-Score is more preferred by human annotators than the baseline metrics.
arXiv Detail & Related papers (2024-04-04T15:36:53Z) - Towards Verifiable Generation: A Benchmark for Knowledge-aware Language Model Attribution [48.86322922826514]
This paper defines a new task of Knowledge-aware Language Model Attribution (KaLMA)
First, we extend attribution source from unstructured texts to Knowledge Graph (KG), whose rich structures benefit both the attribution performance and working scenarios.
Second, we propose a new Conscious Incompetence" setting considering the incomplete knowledge repository.
Third, we propose a comprehensive automatic evaluation metric encompassing text quality, citation quality, and text citation alignment.
arXiv Detail & Related papers (2023-10-09T11:45:59Z) - Guiding Generative Language Models for Data Augmentation in Few-Shot
Text Classification [59.698811329287174]
We leverage GPT-2 for generating artificial training instances in order to improve classification performance.
Our results show that fine-tuning GPT-2 in a handful of label instances leads to consistent classification improvements.
arXiv Detail & Related papers (2021-11-17T12:10:03Z) - DAGA: Data Augmentation with a Generation Approach for Low-resource
Tagging Tasks [88.62288327934499]
We propose a novel augmentation method with language models trained on the linearized labeled sentences.
Our method is applicable to both supervised and semi-supervised settings.
arXiv Detail & Related papers (2020-11-03T07:49:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.