論文の概要: Easydiagnos: a framework for accurate feature selection for automatic diagnosis in smart healthcare
- arxiv url: http://arxiv.org/abs/2410.00366v1
- Date: Tue, 1 Oct 2024 03:28:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-05 06:06:43.698175
- Title: Easydiagnos: a framework for accurate feature selection for automatic diagnosis in smart healthcare
- Title(参考訳): Easydiagnos:スマートヘルスケアにおける自動診断のための正確な特徴選択のためのフレームワーク
- Authors: Prasenjit Maji, Amit Kumar Mondal, Hemanta Kumar Mondal, Saraju P. Mohanty,
- Abstract要約: 本研究では,適応特徴評価器 (AFE) アルゴリズムを用いた革新的なアルゴリズムを提案する。
AFEは医療データセットの機能選択を改善し、問題を克服する。
その結果、スマートヘルスケアにおけるAFEの変革の可能性を強調し、パーソナライズされた透明な患者ケアを可能にした。
- 参考スコア(独自算出の注目度): 0.3749861135832073
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancements in artificial intelligence (AI) have revolutionized smart healthcare, driving innovations in wearable technologies, continuous monitoring devices, and intelligent diagnostic systems. However, security, explainability, robustness, and performance optimization challenges remain critical barriers to widespread adoption in clinical environments. This research presents an innovative algorithmic method using the Adaptive Feature Evaluator (AFE) algorithm to improve feature selection in healthcare datasets and overcome problems. AFE integrating Genetic Algorithms (GA), Explainable Artificial Intelligence (XAI), and Permutation Combination Techniques (PCT), the algorithm optimizes Clinical Decision Support Systems (CDSS), thereby enhancing predictive accuracy and interpretability. The proposed method is validated across three diverse healthcare datasets using six distinct machine learning algorithms, demonstrating its robustness and superiority over conventional feature selection techniques. The results underscore the transformative potential of AFE in smart healthcare, enabling personalized and transparent patient care. Notably, the AFE algorithm, when combined with a Multi-layer Perceptron (MLP), achieved an accuracy of up to 98.5%, highlighting its capability to improve clinical decision-making processes in real-world healthcare applications.
- Abstract(参考訳): 人工知能(AI)の急速な進歩は、スマートヘルスケアに革命をもたらし、ウェアラブル技術、継続的監視デバイス、インテリジェントな診断システムにおけるイノベーションを推進している。
しかし、セキュリティ、説明可能性、堅牢性、パフォーマンス最適化の課題は、臨床環境において広く採用される上で重要な障壁である。
本研究では、適応特徴評価器(AFE)アルゴリズムを用いて、医療データセットの特徴選択を改善し、問題を克服する革新的なアルゴリズムを提案する。
AFEは遺伝的アルゴリズム(GA)、説明可能な人工知能(XAI)、置換結合技術(PCT)を統合し、臨床決定支援システム(CDSS)を最適化し、予測精度と解釈可能性を向上させる。
提案手法は、6つの異なる機械学習アルゴリズムを用いて3つの多様な医療データセットにまたがって検証され、従来の特徴選択手法よりも堅牢性と優位性を示す。
その結果、スマートヘルスケアにおけるAFEの変革の可能性を強調し、パーソナライズされた透明な患者ケアを可能にした。
特に、AFEアルゴリズムとMLP(Multi-layer Perceptron)を組み合わせると、98.5%の精度を達成し、実際の医療アプリケーションにおける臨床意思決定プロセスを改善する能力を強調した。
関連論文リスト
- Leveraging AI for Automatic Classification of PCOS Using Ultrasound Imaging [0.0]
AUTO-PCOS分類チャレンジは、多嚢胞性卵巣症候群(PCOS)の同定における人工知能(AI)の診断能力の向上を目指す
本稿では,InceptionV3アーキテクチャを用いたトランスファーラーニングを利用した堅牢なAIパイプライン構築手法について概説する。
論文 参考訳(メタデータ) (2024-12-30T11:56:11Z) - Towards Next-Generation Medical Agent: How o1 is Reshaping Decision-Making in Medical Scenarios [46.729092855387165]
本稿では,医療用AIエージェントのバックボーンLSMの選択について検討する。
我々の研究結果は、o1の診断精度と一貫性を高める能力を示し、よりスマートでより応答性の高いAIツールへの道を開いた。
論文 参考訳(メタデータ) (2024-11-16T18:19:53Z) - AI-Driven Healthcare: A Survey on Ensuring Fairness and Mitigating Bias [2.398440840890111]
AIアプリケーションは、診断精度、治療のパーソナライゼーション、患者の結果予測を大幅に改善した。
これらの進歩は、実質的な倫理的・公正性の課題ももたらした。
これらのバイアスは、医療提供の格差をもたらし、異なる人口集団の診断精度と治療結果に影響を与える可能性がある。
論文 参考訳(メタデータ) (2024-07-29T02:39:17Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
神経変性疾患(神経変性疾患、ND)は、伝統的に医学的診断とモニタリングのために広範囲の医療資源と人的努力を必要とする。
重要な疾患関連運動症状として、ヒトの歩行を利用して異なるNDを特徴づけることができる。
人工知能(AI)モデルの現在の進歩は、NDの識別と分類のための自動歩行分析を可能にする。
論文 参考訳(メタデータ) (2024-05-21T06:44:40Z) - Emotional Intelligence Through Artificial Intelligence : NLP and Deep Learning in the Analysis of Healthcare Texts [1.9374282535132377]
本論文は,医療関連テキストにおける感情評価における人工知能の利用に関する方法論的考察である。
我々は、感情分析を強化し、感情を分類し、患者の結果を予測するためにAIを利用する多くの研究を精査する。
AIの倫理的応用を保証すること、患者の機密性を保護すること、アルゴリズムの手続きにおける潜在的なバイアスに対処することを含む、継続的な課題がある。
論文 参考訳(メタデータ) (2024-03-14T15:58:13Z) - An Explainable AI Framework for Artificial Intelligence of Medical
Things [2.7774194651211217]
我々はカスタムXAIフレームワークを活用し、LIME(Local Interpretable Model-Agnostic Explanations)、SHAP(SHapley Additive ExPlanations)、Grad-Cam(Grad-weighted Class Activation Mapping)といったテクニックを取り入れた。
提案手法は, 戦略的医療手法の有効性を高め, 信頼度を高め, 医療応用の理解を促進することを目的としている。
我々はXAIフレームワークを脳腫瘍検出に応用し,正確かつ透明な診断方法を示した。
論文 参考訳(メタデータ) (2024-03-07T01:08:41Z) - Using Machine Learning To Identify Software Weaknesses From Software
Requirement Specifications [49.1574468325115]
本研究は、要求仕様からソフトウェア弱点を特定するための効率的な機械学習アルゴリズムを見つけることに焦点を当てる。
ProMISE_exp. Naive Bayes、サポートベクターマシン(SVM)、決定木、ニューラルネットワーク、畳み込みニューラルネットワーク(CNN)アルゴリズムをテストした。
論文 参考訳(メタデータ) (2023-08-10T13:19:10Z) - Validating polyp and instrument segmentation methods in colonoscopy through Medico 2020 and MedAI 2021 Challenges [58.32937972322058]
メディコオートマチックポリープセグメンテーション(Medico 2020)と「メディコ:医療画像の透明性(MedAI 2021)」コンペティション。
本報告では, それぞれのコントリビューションを包括的に分析し, ベストパフォーマンスメソッドの強さを強調し, クリニックへの臨床翻訳の可能性について考察する。
論文 参考訳(メタデータ) (2023-07-30T16:08:45Z) - A Conceptual Algorithm for Applying Ethical Principles of AI to Medical Practice [5.005928809654619]
AIを利用するツールは、複数のドメインにまたがる専門家レベルのパフォーマンスに、ますます一致するか、超えている。
これらのシステムは、人口、人種、社会経済の境界を越えたケア提供の格差を減らすことを約束している。
このようなAIツールの民主化は、ケアコストを削減し、リソース割り当てを最適化し、ケアの質を向上させる。
論文 参考訳(メタデータ) (2023-04-23T04:14:18Z) - Robotic Navigation Autonomy for Subretinal Injection via Intelligent
Real-Time Virtual iOCT Volume Slicing [88.99939660183881]
網膜下注射のための自律型ロボットナビゲーションの枠組みを提案する。
提案手法は,機器のポーズ推定方法,ロボットとi OCTシステム間のオンライン登録,およびインジェクションターゲットへのナビゲーションに適した軌道計画から構成される。
ブタ前眼の精度と再現性について実験を行った。
論文 参考訳(メタデータ) (2023-01-17T21:41:21Z) - The Medkit-Learn(ing) Environment: Medical Decision Modelling through
Simulation [81.72197368690031]
医用シーケンシャルな意思決定に特化して設計された新しいベンチマークスイートを提案する。
Medkit-Learn(ing) Environmentは、高忠実度合成医療データに簡単かつ簡単にアクセスできるPythonパッケージである。
論文 参考訳(メタデータ) (2021-06-08T10:38:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。