Descriptor: Face Detection Dataset for Programmable Threshold-Based Sparse-Vision
- URL: http://arxiv.org/abs/2410.00368v1
- Date: Tue, 1 Oct 2024 03:42:03 GMT
- Title: Descriptor: Face Detection Dataset for Programmable Threshold-Based Sparse-Vision
- Authors: Riadul Islam, Sri Ranga Sai Krishna Tummala, Joey Mulé, Rohith Kankipati, Suraj Jalapally, Dhandeep Challagundla, Chad Howard, Ryan Robucci,
- Abstract summary: This dataset is an annotated, temporal-threshold-based vision dataset for face detection tasks derived from the same videos used for Aff-Wild2.
We anticipate that this resource will significantly support the development of robust vision systems based on smart sensors that can process based on temporal-difference thresholds.
- Score: 0.8271394038014485
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Smart focal-plane and in-chip image processing has emerged as a crucial technology for vision-enabled embedded systems with energy efficiency and privacy. However, the lack of special datasets providing examples of the data that these neuromorphic sensors compute to convey visual information has hindered the adoption of these promising technologies. Neuromorphic imager variants, including event-based sensors, produce various representations such as streams of pixel addresses representing time and locations of intensity changes in the focal plane, temporal-difference data, data sifted/thresholded by temporal differences, image data after applying spatial transformations, optical flow data, and/or statistical representations. To address the critical barrier to entry, we provide an annotated, temporal-threshold-based vision dataset specifically designed for face detection tasks derived from the same videos used for Aff-Wild2. By offering multiple threshold levels (e.g., 4, 8, 12, and 16), this dataset allows for comprehensive evaluation and optimization of state-of-the-art neural architectures under varying conditions and settings compared to traditional methods. The accompanying tool flow for generating event data from raw videos further enhances accessibility and usability. We anticipate that this resource will significantly support the development of robust vision systems based on smart sensors that can process based on temporal-difference thresholds, enabling more accurate and efficient object detection and localization and ultimately promoting the broader adoption of low-power, neuromorphic imaging technologies. To support further research, we publicly released the dataset at \url{https://dx.doi.org/10.21227/bw2e-dj78}.
Related papers
- Quanv4EO: Empowering Earth Observation by means of Quanvolutional Neural Networks [62.12107686529827]
This article highlights a significant shift towards leveraging quantum computing techniques in processing large volumes of remote sensing data.
The proposed Quanv4EO model introduces a quanvolution method for preprocessing multi-dimensional EO data.
Key findings suggest that the proposed model not only maintains high precision in image classification but also shows improvements of around 5% in EO use cases.
arXiv Detail & Related papers (2024-07-24T09:11:34Z) - DailyDVS-200: A Comprehensive Benchmark Dataset for Event-Based Action Recognition [51.96660522869841]
DailyDVS-200 is a benchmark dataset tailored for the event-based action recognition community.
It covers 200 action categories across real-world scenarios, recorded by 47 participants, and comprises more than 22,000 event sequences.
DailyDVS-200 is annotated with 14 attributes, ensuring a detailed characterization of the recorded actions.
arXiv Detail & Related papers (2024-07-06T15:25:10Z) - Research, Applications and Prospects of Event-Based Pedestrian Detection: A Survey [10.494414329120909]
Event-based cameras, inspired by the biological retina, have evolved into cutting-edge sensors distinguished by their minimal power requirements, negligible latency, superior temporal resolution, and expansive dynamic range.
Event-based cameras address limitations by eschewing extraneous data transmissions and obviating motion blur in high-speed imaging scenarios.
This paper offers an exhaustive review of research and applications particularly in the autonomous driving context.
arXiv Detail & Related papers (2024-07-05T06:17:00Z) - A Novel Spike Transformer Network for Depth Estimation from Event Cameras via Cross-modality Knowledge Distillation [3.355813093377501]
Event cameras operate differently from traditional digital cameras, continuously capturing data and generating binary spikes that encode time, location, and light intensity.
This necessitates the development of innovative, spike-aware algorithms tailored for event cameras.
We propose a purely spike-driven spike transformer network for depth estimation from spiking camera data.
arXiv Detail & Related papers (2024-04-26T11:32:53Z) - Neuromorphic Synergy for Video Binarization [54.195375576583864]
Bimodal objects serve as a visual form to embed information that can be easily recognized by vision systems.
Neuromorphic cameras offer new capabilities for alleviating motion blur, but it is non-trivial to first de-blur and then binarize the images in a real-time manner.
We propose an event-based binary reconstruction method that leverages the prior knowledge of the bimodal target's properties to perform inference independently in both event space and image space.
We also develop an efficient integration method to propagate this binary image to high frame rate binary video.
arXiv Detail & Related papers (2024-02-20T01:43:51Z) - Leveraging Neural Radiance Fields for Uncertainty-Aware Visual
Localization [56.95046107046027]
We propose to leverage Neural Radiance Fields (NeRF) to generate training samples for scene coordinate regression.
Despite NeRF's efficiency in rendering, many of the rendered data are polluted by artifacts or only contain minimal information gain.
arXiv Detail & Related papers (2023-10-10T20:11:13Z) - Augmenting Deep Learning Adaptation for Wearable Sensor Data through
Combined Temporal-Frequency Image Encoding [4.458210211781739]
We present a novel modified-recurrent plot-based image representation that seamlessly integrates both temporal and frequency domain information.
We evaluate the proposed method using accelerometer-based activity recognition data and a pretrained ResNet model, and demonstrate its superior performance compared to existing approaches.
arXiv Detail & Related papers (2023-07-03T09:29:27Z) - Robust Data Hiding Using Inverse Gradient Attention [82.73143630466629]
In the data hiding task, each pixel of cover images should be treated differently since they have divergent tolerabilities.
We propose a novel deep data hiding scheme with Inverse Gradient Attention (IGA), combing the ideas of adversarial learning and attention mechanism.
Empirically, extensive experiments show that the proposed model outperforms the state-of-the-art methods on two prevalent datasets.
arXiv Detail & Related papers (2020-11-21T19:08:23Z) - Semantics-aware Adaptive Knowledge Distillation for Sensor-to-Vision
Action Recognition [131.6328804788164]
We propose a framework, named Semantics-aware Adaptive Knowledge Distillation Networks (SAKDN), to enhance action recognition in vision-sensor modality (videos)
The SAKDN uses multiple wearable-sensors as teacher modalities and uses RGB videos as student modality.
arXiv Detail & Related papers (2020-09-01T03:38:31Z) - Learning Temporally Invariant and Localizable Features via Data
Augmentation for Video Recognition [9.860323576151897]
In image recognition, learning spatially invariant features is a key factor in improving recognition performance and augmentation.
In this study, we extend these strategies to the temporal dimension for videos to learn temporally invariant or temporally local features.
Based on our novel temporal data augmentation algorithms, video recognition performances are improved using only a limited amount of training data.
arXiv Detail & Related papers (2020-08-13T06:56:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.