論文の概要: Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration
- arxiv url: http://arxiv.org/abs/2410.00418v1
- Date: Tue, 1 Oct 2024 05:54:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-05 05:46:46.163728
- Title: Posterior-Mean Rectified Flow: Towards Minimum MSE Photo-Realistic Image Restoration
- Title(参考訳): 後方平均整流流:最小MSE光リアリスティック画像復元に向けて
- Authors: Guy Ohayon, Tomer Michaeli, Michael Elad,
- Abstract要約: Posterior-Mean Rectified Flow (PMRF) は、この最適推定器を近似する単純かつ高効率なアルゴリズムである。
PMRFの理論的有用性について検討し,様々な画像復元作業において従来手法よりも一貫して優れていることを示す。
- 参考スコア(独自算出の注目度): 34.50287066865267
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Photo-realistic image restoration algorithms are typically evaluated by distortion measures (e.g., PSNR, SSIM) and by perceptual quality measures (e.g., FID, NIQE), where the desire is to attain the lowest possible distortion without compromising on perceptual quality. To achieve this goal, current methods typically attempt to sample from the posterior distribution, or to optimize a weighted sum of a distortion loss (e.g., MSE) and a perceptual quality loss (e.g., GAN). Unlike previous works, this paper is concerned specifically with the optimal estimator that minimizes the MSE under a constraint of perfect perceptual index, namely where the distribution of the reconstructed images is equal to that of the ground-truth ones. A recent theoretical result shows that such an estimator can be constructed by optimally transporting the posterior mean prediction (MMSE estimate) to the distribution of the ground-truth images. Inspired by this result, we introduce Posterior-Mean Rectified Flow (PMRF), a simple yet highly effective algorithm that approximates this optimal estimator. In particular, PMRF first predicts the posterior mean, and then transports the result to a high-quality image using a rectified flow model that approximates the desired optimal transport map. We investigate the theoretical utility of PMRF and demonstrate that it consistently outperforms previous methods on a variety of image restoration tasks.
- Abstract(参考訳): 光リアル画像復元アルゴリズムは通常、歪み測定(例えば、PSNR、SSIM)と知覚品質測定(例えば、FID、NIQE)で評価される。
この目的を達成するために、現在の手法は通常、後部分布からサンプリングしたり、歪み損失(e , MSE)と知覚品質損失(e , GAN)の重み付け和を最適化しようとする。
従来と異なり,本論文では,完全知覚指数の制約の下でMSEを最小化する最適推定器について検討した。
近年の理論的結果から,後部平均予測(MMSE推定)を地中構造画像の分布に最適に移動させることで,そのような推定器を構築できることが示唆された。
この結果にインスパイアされた後平均整流(PMRF)は,この最適推定器を近似した単純かつ高効率なアルゴリズムである。
特に、PMRFはまず後部平均を予測し、次に所望の最適輸送マップを近似した整流モデルを用いて高品質な画像に転送する。
PMRFの理論的有用性について検討し,様々な画像復元作業において従来手法よりも一貫して優れていることを示す。
関連論文リスト
- Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer [52.09480867526656]
人間の嗜好を学習する際の分布変化と不確実性の一形態として,不一致の原因を同定する。
過度な最適化を緩和するために、まず、逆選択された報酬モデルに最適なポリシーを選択する理論アルゴリズムを提案する。
報奨モデルとそれに対応する最適ポリシーの等価性を用いて、優先最適化損失と教師付き学習損失を組み合わせた単純な目的を特徴とする。
論文 参考訳(メタデータ) (2024-05-26T05:38:50Z) - Deep Optimal Transport: A Practical Algorithm for Photo-realistic Image Restoration [31.58365182858562]
事前学習したモデルの知覚的品質および/または平均二乗誤差(MSE)を制御できる画像復元アルゴリズムを提案する。
モデルによって復元された約1ダースの画像を考えると、新たな画像に対するモデルの知覚的品質と/またはMSEを、それ以上の訓練をすることなく大幅に向上させることができる。
論文 参考訳(メタデータ) (2023-06-04T12:21:53Z) - One Sample Diffusion Model in Projection Domain for Low-Dose CT Imaging [10.797632196651731]
低線量CTは臨床応用における放射線リスクの低減に重要な役割を担っている。
ディープラーニングの急速な開発と幅広い応用により、低線量CTイメージングアルゴリズムの開発に向けた新たな方向性がもたらされた。
低用量CT再構成のための投影領域における完全に教師なし1サンプル拡散モデル(OSDM)を提案する。
以上の結果から,OSDMはアーティファクトを低減し,画像品質を維持するための実用的で効果的なモデルであることが証明された。
論文 参考訳(メタデータ) (2022-12-07T13:39:23Z) - Fast Scalable Image Restoration using Total Variation Priors and
Expectation Propagation [7.7731951589289565]
本稿では,全変動(TV)を用いた画像復元のための拡張性のあるベイズ近似手法を提案する。
我々は期待伝搬(EP)フレームワークを用いて最小平均二乗誤差(MMSE)推定器と限界(ピクセル単位)分散を近似する。
論文 参考訳(メタデータ) (2021-10-04T17:28:41Z) - Perceptual Image Restoration with High-Quality Priori and Degradation
Learning [28.93489249639681]
本モデルは,復元画像と劣化画像の類似度を測定するのに有効であることを示す。
同時修復・拡張フレームワークは,実世界の複雑な分解型によく一般化する。
論文 参考訳(メタデータ) (2021-03-04T13:19:50Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
本研究では,不確実性推定のための拡張性のある汎用的アプローチとして,償却条件正規化最大値(ACNML)法を提案する。
提案アルゴリズムは条件付き正規化最大度(CNML)符号化方式に基づいており、最小記述長の原理に従って最小値の最適特性を持つ。
我々は、ACNMLが、分布外入力のキャリブレーションの観点から、不確実性推定のための多くの手法と好意的に比較することを示した。
論文 参考訳(メタデータ) (2020-11-05T08:04:34Z) - Probabilistic 3D surface reconstruction from sparse MRI information [58.14653650521129]
スパース2次元MR画像データとアレータティック不確実性予測から3次元表面再構成を同時に行うための新しい確率論的深層学習手法を提案する。
本手法は,3つの準直交MR画像スライスから,限られたトレーニングセットから大きな表面メッシュを再構成することができる。
論文 参考訳(メタデータ) (2020-10-05T14:18:52Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
ブラインド画像復元はコンピュータビジョンでは一般的だが難しい問題である。
両利点を両立させることを目的として,新しいブラインド画像復元手法を提案する。
画像デノイングと超解像という2つの典型的なブラインド赤外線タスクの実験により,提案手法が現状よりも優れた性能を達成できることが実証された。
論文 参考訳(メタデータ) (2020-08-25T03:30:53Z) - Perceptually Optimizing Deep Image Compression [53.705543593594285]
平均二乗誤差(MSE)と$ell_p$ノルムは、ニューラルネットワークの損失の測定で大きく支配されている。
本稿では,定量的知覚モデルに対して,画像解析ネットワークを最適化するための異なるプロキシ手法を提案する。
論文 参考訳(メタデータ) (2020-07-03T14:33:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。