Residual-$ZZ$-coupling suppression and fast two-qubit gate for Kerr-cat qubits based on level-degeneracy engineering
- URL: http://arxiv.org/abs/2410.00431v1
- Date: Tue, 1 Oct 2024 06:26:07 GMT
- Title: Residual-$ZZ$-coupling suppression and fast two-qubit gate for Kerr-cat qubits based on level-degeneracy engineering
- Authors: Takaaki Aoki, Akiyoshi Tomonaga, Kosuke Mizuno, Shumpei Masuda,
- Abstract summary: Building large-scale quantum computers requires an interqubit-coupling scheme with a high on-off ratio.
We propose a $ZZ$-coupling scheme for two Kerr-cat qubits with a frequency-tunable coupler.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Building large-scale quantum computers requires an interqubit-coupling scheme with a high on-off ratio to avoid unwanted crosstalk coming from residual coupling and to enable fast multi-qubit operations. We propose a $ZZ$-coupling scheme for two Kerr-cat qubits with a frequency-tunable coupler. By making four relevant states of the two Kerr-cat qubits quadruply degenerate, we can switch off the $ZZ$ coupling. By partially lifting the level degeneracy, we can switch it on. We theoretically show that an experimentally feasible circuit model suppresses the residual $ZZ$ coupling. Moreover, our circuit can realize $R_{ZZ}(-\pi/2)$-gate fidelity higher than $99.999\%$ within $25\,$ns when decoherence is ignored.
Related papers
- Experimental realization of direct entangling gates between dual-type qubits [2.8241239147294883]
We demonstrate a direct entangling gate between dual-type qubits encoded in the $S_1/2$ and $D_5/2$ hyperfine equations of $137mathrmBa+$ ions.
We achieve a Bell state fidelity of $96.3(4)%$ for the dual-type Molmer-Sorensen gate between an $S$-$D$ ion pair, comparable to that for the same-type $S$-$S$ or $D$-$D$ gates.
This technique can reduce the overhead for back-
arXiv Detail & Related papers (2024-10-08T03:18:29Z) - On the Constant Depth Implementation of Pauli Exponentials [49.48516314472825]
We decompose arbitrary exponentials into circuits of constant depth using $mathcalO(n)$ ancillae and two-body XX and ZZ interactions.
We prove the correctness of our approach, after introducing novel rewrite rules for circuits which benefit from qubit recycling.
arXiv Detail & Related papers (2024-08-15T17:09:08Z) - Realization of two-qubit gates and multi-body entanglement states in an asymmetric superconducting circuits [3.9488862168263412]
We propose a tunable fluxonium-transmon-transmon (FTT) cou pling scheme.
The asymmetric structure composed of fluxonium and transmon will optimize the frequency space and form a high fidelity two-qubit quantum gate.
We study the performance of this scheme by simulating the general single-qubit Xpi/2 gate and two-qubit (iSWAP) gate.
arXiv Detail & Related papers (2024-04-12T08:44:21Z) - Cat-qubit-inspired gate on cos($2\theta$) qubits [77.34726150561087]
We introduce a single-qubit $Z$ gate inspired by the noise-bias preserving gate of the Kerr-cat qubit.
This scheme relies on a $pi$ rotation in phase space via a beamsplitter-like transformation between a qubit and ancilla qubit.
arXiv Detail & Related papers (2023-04-04T23:06:22Z) - Control of the $ZZ$ coupling between Kerr-cat qubits via transmon
couplers [0.0]
Kerr-cat qubits are a promising candidate for fault-tolerant quantum computers.
We propose a $ZZ$-coupling scheme using two transmon couplers.
We numerically show that the fidelity of the $R_zz(-pi/2)$ gate is higher than 99.9% in a case of $16$-ns gate time and without decoherence.
arXiv Detail & Related papers (2023-03-29T12:22:34Z) - Cutting multi-control quantum gates with ZX calculus [2.7425745251534064]
We introduce a method for cutting multi-controlled Z gates.
We evaluate our proposal on IBM hardware and experimentally show noise resilience due to the strong reduction of CNOT gates in the cut circuits.
arXiv Detail & Related papers (2023-02-01T11:47:05Z) - Long-distance transmon coupler with CZ gate fidelity above $99.8\%$ [37.50928453361462]
We demonstrate a tunable qubit-qubit coupler based on a floating transmon device.
We place qubits at least 2 mm apart from each other while maintaining over 50 MHz coupling between the coupler and the qubits.
arXiv Detail & Related papers (2022-08-19T17:37:56Z) - Erasure qubits: Overcoming the $T_1$ limit in superconducting circuits [105.54048699217668]
amplitude damping time, $T_phi$, has long stood as the major factor limiting quantum fidelity in superconducting circuits.
We propose a scheme for overcoming the conventional $T_phi$ limit on fidelity by designing qubits in a way that amplitude damping errors can be detected and converted into erasure errors.
arXiv Detail & Related papers (2022-08-10T17:39:21Z) - High fidelity two-qubit gates on fluxoniums using a tunable coupler [47.187609203210705]
Superconducting fluxonium qubits provide a promising alternative to transmons on the path toward large-scale quantum computing.
A major challenge for multi-qubit fluxonium devices is the experimental demonstration of a scalable crosstalk-free multi-qubit architecture.
Here, we present a two-qubit fluxonium-based quantum processor with a tunable coupler element.
arXiv Detail & Related papers (2022-03-30T13:44:52Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Universal non-adiabatic control of small-gap superconducting qubits [47.187609203210705]
We introduce a superconducting composite qubit formed from two capacitively coupled transmon qubits.
We control this low-frequency CQB using solely baseband pulses, non-adiabatic transitions, and coherent Landau-Zener interference.
This work demonstrates that universal non-adiabatic control of low-frequency qubits is feasible using solely baseband pulses.
arXiv Detail & Related papers (2020-03-29T22:48:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.