Probabilistic Analysis of Copyright Disputes and Generative AI Safety
- URL: http://arxiv.org/abs/2410.00475v2
- Date: Wed, 2 Oct 2024 03:36:39 GMT
- Title: Probabilistic Analysis of Copyright Disputes and Generative AI Safety
- Authors: Hiroaki Chiba-Okabe,
- Abstract summary: The paper provides a structured analysis of key evidentiary principles, with particular emphasis on the "inverse ratio rule"
The paper examines the heightened copyright risks posed by generative AI, highlighting how extensive access to copyrighted material by generative models increases the risk of infringement.
The analysis reveals that while the Near Access-Free (NAF) condition mitigates some infringement risks, its justifiability and efficacy are questionable in certain contexts.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a probabilistic approach to analyzing copyright infringement disputes by formalizing relevant judicial principles within a coherent framework based on the random-worlds method. The approach provides a structured analysis of key evidentiary principles, with particular emphasis on the "inverse ratio rule"--a controversial doctrine adopted by some courts. Although this rule has faced significant criticism, a formal proof demonstrates its validity, provided it is properly defined. Additionally, the paper examines the heightened copyright risks posed by generative AI, highlighting how extensive access to copyrighted material by generative models increases the risk of infringement. Utilizing the probabilistic approach, the Near Access-Free (NAF) condition, previously proposed as a potential mitigation strategy, is evaluated. The analysis reveals that while the NAF condition mitigates some infringement risks, its justifiability and efficacy are questionable in certain contexts. These findings demonstrate how a rigorous probabilistic approach can advance our understanding of copyright jurisprudence and its interaction with emerging technologies.
Related papers
- Rethinking State Disentanglement in Causal Reinforcement Learning [78.12976579620165]
Causality provides rigorous theoretical support for ensuring that the underlying states can be uniquely recovered through identifiability.
We revisit this research line and find that incorporating RL-specific context can reduce unnecessary assumptions in previous identifiability analyses for latent states.
We propose a novel approach for general partially observable Markov Decision Processes (POMDPs) by replacing the complicated structural constraints in previous methods with two simple constraints for transition and reward preservation.
arXiv Detail & Related papers (2024-08-24T06:49:13Z) - Randomization Techniques to Mitigate the Risk of Copyright Infringement [48.75580082851766]
We investigate potential randomization approaches that can complement current practices for copyright protection.
This is motivated by the inherent ambiguity of the rules that determine substantial similarity in copyright precedents.
Similar randomized approaches, such as differential privacy, have been successful in mitigating privacy risks.
arXiv Detail & Related papers (2024-08-21T20:55:00Z) - Evaluating Copyright Takedown Methods for Language Models [100.38129820325497]
Language models (LMs) derive their capabilities from extensive training on diverse data, including potentially copyrighted material.
This paper introduces the first evaluation of the feasibility and side effects of copyright takedowns for LMs.
We examine several strategies, including adding system prompts, decoding-time filtering interventions, and unlearning approaches.
arXiv Detail & Related papers (2024-06-26T18:09:46Z) - VA3: Virtually Assured Amplification Attack on Probabilistic Copyright Protection for Text-to-Image Generative Models [27.77911368516792]
We introduce Virtually Assured Amplification Attack (VA3), a novel online attack framework.
VA3 amplifies the probability of generating infringing content on the sustained interactions with generative models.
These findings highlight the potential risk of implementing probabilistic copyright protection in practical applications of text-to-image generative models.
arXiv Detail & Related papers (2023-11-29T12:10:00Z) - Beyond Incompatibility: Trade-offs between Mutually Exclusive Fairness Criteria in Machine Learning and Law [2.959308758321417]
We present a novel algorithm (FAir Interpolation Method: FAIM) for continuously interpolating between three fairness criteria.
We demonstrate the effectiveness of our algorithm when applied to synthetic data, the COMPAS data set, and a new, real-world data set from the e-commerce sector.
arXiv Detail & Related papers (2022-12-01T12:47:54Z) - Algorithmic Fairness in Business Analytics: Directions for Research and
Practice [24.309795052068388]
This paper offers a forward-looking, BA-focused review of algorithmic fairness.
We first review the state-of-the-art research on sources and measures of bias, as well as bias mitigation algorithms.
We then provide a detailed discussion of the utility-fairness relationship, emphasizing that the frequent assumption of a trade-off between these two constructs is often mistaken or short-sighted.
arXiv Detail & Related papers (2022-07-22T10:21:38Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
We consider vertical logistic regression (VLR) trained with mini-batch descent gradient.
We provide a comprehensive and rigorous privacy analysis of VLR in a class of open-source Federated Learning frameworks.
arXiv Detail & Related papers (2022-07-19T05:47:30Z) - Conformal Off-Policy Prediction in Contextual Bandits [54.67508891852636]
Conformal off-policy prediction can output reliable predictive intervals for the outcome under a new target policy.
We provide theoretical finite-sample guarantees without making any additional assumptions beyond the standard contextual bandit setup.
arXiv Detail & Related papers (2022-06-09T10:39:33Z) - Logical Credal Networks [87.25387518070411]
This paper introduces Logical Credal Networks, an expressive probabilistic logic that generalizes many prior models that combine logic and probability.
We investigate its performance on maximum a posteriori inference tasks, including solving Mastermind games with uncertainty and detecting credit card fraud.
arXiv Detail & Related papers (2021-09-25T00:00:47Z) - Fairness Deconstructed: A Sociotechnical View of 'Fair' Algorithms in
Criminal Justice [0.0]
Machine learning researchers have developed methods for fairness, many of which rely on equalizing empirical metrics across protected attributes.
I argue that much of the fair ML fails to account for fairness issues with underlying crime data.
Instead of building AI that reifies power imbalances, I ask whether data science can be used to understand the root causes of structural marginalization.
arXiv Detail & Related papers (2021-06-25T06:52:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.